已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数列求和,几种重要的求和思想方法:1.倒序相加法.2.错位相减法.,3.法:.4.裂项相消法:,倒序相加法:,如果一个数列an,与首末两项等距的两项之和等于首末两项之和(都相等,为定值),可采用把正着写和与倒着写和的两个和式相加,就得到一个常数列的和,这一求和的方法称为倒序相加法.,类型a1+an=a2+an-1=a3+an-2=,典例.已知,求S.,2.倒序相加法,2.错位相减,典例3:1+23+332+433+n3n-1=?,当an是等差数列,bn是等比数列,求数列anbn的前n项和适用错位相减,通项,错位相减法:,如果一个数列的各项是由一个等差数列与一个等比数列对应项乘积组成,此时求和可采用错位相减法.,既anbn型,等差,等比,4、裂项相消,分裂通项法:,把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前n项的和变成首尾若干少数项之和,这一求和方法称为分裂通项法.(见到分式型的要往这种方法联想),同类性质的数列归于一组,目的是为便于运用常见数列的求和公式.,拆项分组求和:,典例5:数列an的通项an=2n+2n-1,求该数列的前n项和.,分组求和法:,把数列的每一项分成两项,或把数列的项“集”在一块重新组合,或把整个数列分成两部分,使其转化为等差或等比数列,这一求和方法称为分组求和法.,an+bn+cn,等差,等比,错位相减或裂项相消,典型6:1-22+32-42+(2n-1)2-(2n)2=?,局部重组转化为常见数列,并项求和,交错数列,并项求和,既(-1)nbn型,练习10:已知Sn=-1+3-5+7+(-1)n(2n-1),1)求S20,S212)求Sn,S20=-1+3+(-5)+7+(-37)+39,S21=-1+3+(-5)+7+(-9)+39+(-41),=20,=-21,总的方向:1.转化为等差或等比数列的求和2.转化为能消项的,思考方式:求和看通项(怎样的类型)若无通项,则须先求出通项,方法及题型:,1.等差、等比数列用公式法,2.倒序相加法,5.拆项分组求和法,4.裂项相消法,3.错位相减法,6.并项求和法,热点题型1:递归数列与极限.,设数列an的首项a1=a,且,记,nl,2,3,(I)求a2,a3;(II)判断数列bn是否为等比数列,并证明你的结论;(III)求,因为bn+1a2n+1=a2n=(a2n1)=bn,(nN*)所以bn是首项为a,公比为的等比数列,深化数列中的数学思想方法:,热点题型1:递归数列与极限.,设数列an的首项a1=a,且,记,nl,2,3,(I)求a2,a3;(II)判断数列bn是否为等比数列,并证明你的结论;(III)求,热点题型2:递归数列与转化的思想方法.,数列an满足a1=1且8an+1-16an+1+2an+5=0(n1)。记(n1)。(1)求b1、b2、b3、b4的值;(2)求数列bn的通项公式及数列anbn的前n项和Sn。,热点题型2:递归数列与转化的思想方法.,数列an满足a1=1且8an+1-16an+1+2an+5=0(n1)。记(n1)。(1)求b1、b2、b3、b4的值;(2)求数列bn的通项公式及数列anbn
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 芜湖市中医院老年甲状腺疾病诊疗特点考核
- 泉州市中医院女性生殖器手术编码考核
- 基金从业考试 秀及答案解析
- 期货从业人员资格考试及答案解析
- 徐州市人民医院医疗安全与不良事件上报制度笔试试题
- 护理专业期末搜题题库及答案解析
- 南平市人民医院骨科康复技能专项考核
- 运动鞋买卖合同(品牌批发)
- 台州市人民医院病理标本接收规范考核
- 节能产品认证创新创业项目商业计划书
- 第4课 化解冲突有办法 (教学设计)-苏教版心理健康四年级上册
- SBT 11215-2018 商品交易市场建设与经营管理术语
- 2024春苏教版《亮点给力大试卷》 数学四年级下册(全册有答案)
- 人教版小学英语PEP三至六年级单词默写纸(汉译英+英译汉)
- GB/T 35594-2023医药包装用纸和纸板
- 2021变电站端子箱
- 2023国家开放大学:《python程序设计》实验一-Python基础基础环境熟悉
- 村卫生室药品管理制度
- 职业健康安全管理手册+程序文件(ISO45001-2018)
- 降低阴式分娩产后出血发生率-PDCA
- 耳尖放血课件完整版
评论
0/150
提交评论