




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
8.6z变换与拉普拉斯变换的关系,一z平面与s平面的映射关系二z变换与拉氏变换表达式之对应,返回,至此,我们已经讨论了三种变换方法,即:傅立叶变换、拉普拉斯变换和z变换。这些变换并不是孤立的,它们之间有着密切联系,并在一定条件下可以互相转化。在第四章讨论过傅立叶变换与拉普拉斯变换的关系,现在研究z变换与拉普拉斯变换的关系。,一z平面与s平面的映射关系,在引入z变换的定义时,引入符号z=esT,式中T是序列的时间间隔,重复频率ws=2p/T,sz平面映射关系,这两个等式表明:z的模r仅对应于s的实部s;z的幅角q仅对应于s的虚部w。,s平面(s=s+jw),z平面(z=rejq),原点(s=0,w=0),z=1,(2)s平面上的虚轴(s=0,s=jw)映射到z平面是单位圆;s平面的左半平面(s0)映射到z平面是单位圆的圆外;平行于虚轴的直线(s=常数)映射到z平面是圆。,s平面(s=s+jw),z平面(z=rejq),虚轴(s=0,s=jw),单位圆(r=1,q任意),左半平面(s1,q任意),平行于虚轴的直线(s=常数:-+),圆(s0,r1s0,r|esT|,当符合这一条件时,这就是直接由连续函数的拉氏变换式求抽样后的离散序列z变换式的关系式。,该积分式当然也可以用留数定理来计算。即:,X(s)的诸极点,例如:当X(s)有一单阶极点s1时,以上从拉氏逆变换式出发推证了拉氏变换式与z变换式的关系式。,容易求得,它的拉式变换为,若序列X(nT)由N项指数序列相加组合而成,下面把信号按部分分式分解进行讨论,它的z变换为,注意跳变值,借助模拟滤波器设计数字滤波器,例8-6-1,例8-6-2,返回,注意:连续时间信号的突变点函数值与对应的序列样值有区别。,例如,阶跃信号u(t)在t=0点定义为1/2;阶跃序列u(n)在点n=0定义为1。,注意跳变值,返回,已知指数函数e-atu(t)的拉式变换为,求抽样序列e-anTu(nT)的z变换。,X(s)只有一个一阶级点s=-a,可以直接求出e-anTu(nT)的z变换为,解:,例8-6-1,返回,于是,X(s)可以展成部分分式,已知正弦信号sin(w0t)u(t)的拉式变换为,求抽样序列sin(w0nT)u(nT)的z变换。,显然X(s)的极点位于s1=jw0,s2=-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025技术许可合同范本下载
- 第12课 心平气和待分歧说课稿-2025-2026学年小学心理健康五年级下册教科版
- 部编统编一下语文语文园地二教学反思公开课教案(2025-2026学年)
- 公平达成合同
- 耐火材料合同
- 一次性付清房款合同
- 二手车购买合同
- 2018春苏科版七年级生物下册第五单元第10章同步说课稿:5.10.2水中的藻类植物
- 2025年深圳民间个人借款合同范本
- 2025有关委托理财的合同
- 2025年教师职称-上海-上海教师职称(基础知识、综合素质、高中语文)历年参考题库含答案解析(5套)
- 汽轮机原理课件
- 2025成人高考专升本政治试题及答案
- 2025年国家基本公卫生服务规范第三版试题及答案
- 回款考核管理办法
- 教师招聘之幼儿教师招聘题库
- 2025年新兼职安全员安全培训试题及答案
- 规培述职报告
- DB42∕T 1902-2022 中小学生营养配餐指南
- 养老现状课件
- 脑梗塞言语不利护理查房
评论
0/150
提交评论