已阅读5页,还剩29页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,1.平面的方程,设一平面通过已知点,且垂直于非零向,称式为平面的点法式方程,求该平面的方程.,法向量.,量,则有,故,5-3空间中平面与直线的方程,平面的点法式方程(1)可以化成,例1已知一平面的法向量为(2,3,4),平面上一点的坐标为(1,1,1),则该平面之方程是:,即,补例求过三点,即,解取该平面的法向量为,的平面的方程.,利用点法式得平面的方程,例2已知一平面的方程为,解,于是,平面的一般方程,由于平面的点法式方程是x,y,z的一次方程,而任一平面都可以用它上面的一点及它的法线向量来确定,所以任一平面都可以用三元一次方程来表示.反过来,可以证明任一三元一次方程Ax+By+Cz+D=0的图形总是一个平面.方程Ax+By+Cz+D=0称为平面的一般方程,其法线向量为n=(A,B,C).,例如,方程3x-4y+z-9=0表示一个平面,n=(3,-4,1)是这平面的一个法线向量.,例3将平面的一般式方程3x+4y+6z=1化成点法式方程.,解,先在平面上任意选定一点,,比如(-3,1,1).,则有,平面的三点式方程,已知不在同一直线上的三点,与不共线,即,以作为所求平面的法向量.,设是平面上任一点,显然垂直于,此混合积的坐标形式为:,解,所求的平面方程是,特殊情形,当D=0时,Ax+By+Cz=0表示,通过原点的平面;,当A=0时,By+Cz+D=0的法向量,平面平行于x轴;,Ax+Cz+D=0表示,Ax+By+D=0表示,Cz+D=0表示,Ax+D=0表示,By+D=0表示,平行于y轴的平面;,平行于z轴的平面;,平行于xoy面的平面;,平行于yoz面的平面;,平行于zox面的平面.,解:,因平面通过x轴,设所求平面方程为,代入已知点,得,化简,得所求平面方程,补例求通过x轴和点(4,3,1)的平面方程.,平面的截距式方程,同理求得,平面的截距式方程为,两平面的夹角,设平面1和2的法线向量分别为n1=(A1,B1,C1),n2=(A2,B2,C2),那么平面1和2的夹角应满足,两平面的法向量的夹角(通常指锐角)称为两平面的夹角.,平面A1x+B1y+C1z+D1=0和A2x+B2y+C2z+D2=0互相垂直的充要条件是A1A2+B1B2+C1C2=0.,两平面垂直的条件,两平面平行的条件,平面A1x+B1y+C1z+D1=0和A2x+B2y+C2z+D2=0互相平行的充要条件是A1:A2=B1:B2=C1:C2.,平面A1x+B1y+C1z+D1=0和A2x+B2y+C2z+D2=0夹角的余弦:,例8试决定常数与使得平面,解,两平面垂直要求其向量垂直,即有,因此有,补例一平面通过两点,垂直于平面:x+y+z=0,求其方程.,解:设所求平面的法向量为,即,的法向量,约去C,得,即,和,则所求平面,故,方程为,且,2.空间直线方程,因此其一般式方程,一般式方程,直线可视为两平面交线,,机动目录上页下页返回结束,例9联立方程,的解是(3,4,z),其图形是平面x-3=0与y-4=0的交线,它,平行于z轴.,代表平面y=5x+1与平面y=x-3的交线.,例10联立方程,求通过点M0(x0,y0,z0),方向向量为s=(m,n,p)的直线的方程.,(x-x0,y-y0,z-z0)/s,从而有,这就是直线的方程,叫做直线的对称式方程或标准方程.,则从M0到M的向量平行于方向向量:,设M(x,y,z)为直线上的任一点,如果一个非零向量平行于一条已知直线,这个向量就叫做这条直线的方向向量.,方向向量,对称式方程,通过点M0(x0,y0,x0),方向向量为s=(m,n,p)的直线方程:,说明:某些分母为零时,其分子也理解为零.,直线方程为,例如,当,直线方程为,此方程组就是直线的参数方程.,参数式方程:,例11将一般方程,解先在直线上找一点.,再求直线的方向向量,令x=1,解方程组,得,已知直线的两平面的法向量为,是直线上一点.,化成标准方程及参数方程.,故所给直线的标准方程为,参数式方程为,解题思路:,先找直线上一点;,再找直线的方向向量.,两直线的夹角,两直线的方向向量的夹角(通常指锐角)叫做两直线的夹角.,设直线L1和L2的方向向量分别为s1=(m1,n1,p1)和s2=(m2,n2,p2),那么L1和L2的夹角j满足,两直线垂直与平行的条件,设有两直线,L1L2m1m2+n1n2+p1p2=0;,则,方向向量分别为(m1,n1,p1)和(m2,n2,p2)的直线的夹角余弦:,提示:,直线与平面的夹角,当直线与平面不垂直时,直线和它在平面上的投影直线的夹角j称为直线与平面的夹角,当直线与平面垂直时,规定直线与平面的夹角为90.,设直线的方向向量为s=(m,n,p),平面的法线向量为n=(A,B,C),则直线与平面的夹角j满足,方向向量为(m,n,p)的直线与法线向量为(A,B,C)的平面的夹角j满足,直线与平面垂直和平行的条件,设直线L的方向向量为s=(m,n,p),平面P的法线向量为n=(A,B,C),则,L/PAm+Bn+Cp=0.,上述方程表示通过定直线L的所有平面的全体,称为平面束.,平面束,考虑三元一次方程:,A1x+B1y+C1z+D1+l(A2x+B2y+C2z+D2)=0,即(A1+lA2)x+(B1+lB2)y+(C1+lC1)z+D1+lD2=0,其中l为任意常数.,补例.求直线,在平面,上的投影直线方程.,解过已知直线的平面束方程,从中选择,得,这是投影平面,即,使其与已知平面垂直:,从而得投影直线方程,内容小结,1.平面基本方程:,一般式,点法式,截距式,三点式,2.平面与平面之间的关系,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年南通辅警协警招聘考试备考题库含答案详解(能力提升)
- 2023年邯郸辅警协警招聘考试真题完整答案详解
- 杭州电子科技大学信息工程学院《财务管理英语》2024-2025学年第一学期期末试卷
- 广东石油化工学院《3Dmax进阶动画》2024-2025学年第一学期期末试卷
- 陕西省兴平市2025年高一生物第一学期期末调研模拟试题含解析
- 2025年山东省曹县三桐中学年生物高二上期末调研试题含解析
- 牡丹江大学《地貌及第四纪地质学》2024-2025学年第一学期期末试卷
- 2025-2026学年云南省昆明市外国语学校高二上化学期末综合测试试题含解析
- 2023年眉山辅警协警招聘考试真题含答案详解(预热题)
- 2023年玉溪辅警协警招聘考试备考题库含答案详解(能力提升)
- 第三单元一《伐檀》公开课一等奖创新教案-【中职专用】(中职语文高教版2023-2024-基础模块上册)
- 中建景墙专项施工方案
- 2022烟台财金集团招聘试题及答案解析
- 基于GeoGebra的数学研究与教学应用课件
- 兽医公共卫生学
- 履约评价表模板
- 办公楼室内装饰装修工程施工方案
- 光声成像技术简介课件
- GB/T 6417.1-2005金属熔化焊接头缺欠分类及说明
- GB/T 13576.1-1992锯齿形(3°、30°)螺纹牙型
- 绝对值的练习课课件
评论
0/150
提交评论