




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
五年级各单元教学中需要关注的问题(一)数与代数1.第一单元“小数除法”“小数除法”单元不仅解决小数除法算法问题,而且解决了整数除法没有解决的问题。在整数范围内,25的商是不存在的,但在小数范围内,25=0.4也就是说,在小数范围内,除法可以畅通无阻。因此,在小数范围内,乘法与除法才具有互为逆运算关系。其实,小数除法的计算道理,在整数除法中就有了。如2005,如果把200看成2个百,就不够除以5,但把200看成20个十,就可以除以5,商为4个十,即2005=40。同理,25不够除,但把2看成20个0.1就够了,商是4个0.1,即25=0.4。因此,整数除法的竖式笔算可以迁移到小数除法,只要知道:如果高位上的数字不够除,把它化成低位上的数字就可以继续除下去。理解小数除法的竖式笔算的算法重点,是理解整数除法与小数除法的区别与联系,从而在整数竖式笔算的基础上,掌握小数除法的竖式笔算。引导学生反思,归纳、概括它的计算法则。如,除数是整数的小数除法,商包含整数部分与小数部分。商的整数部分是除数除被除数的整数部分的结果(是已学过的整数除法),所以,商的小数点要与被除数的小数点对齐。商的小数部分是除数除余数部分所得的结果。计算的策略仍然沿袭整数除法的策略,即高位的数值不够除时就化成低位的数值(需要时可以在被除数的小数后面补0),就可以继续除下去,直至得到结果。 小数点的主要作用是指示小数中个位的位置。所以,除数是整数的小数除法的竖式笔算,求出商的整数部分后,必须先添个小数点(与被除数的小数点对齐),再继续求商的小数部分。值得注意是小数除法一个特有的现象:当被除数小于除数时,商的整数部分是0,在这种情况下所得的商是一个纯小数(大于0且小于1的小数)。本单元小数除法是以竖式除法为重点,为什么不探究其他更简洁合理的算法呢? 小数除法以竖式除法为重点,是因为从小数的竖式除法的探索中可以深刻地感悟到把未知转化为已知的思维方式与扩展知识的学习方法:从整数除法拓展到除数是整数的小数除法,再拓展到除数是小数的小数除法。在计算机时代,竖式笔算的应用价值虽然贬值了,但竖式笔算追求算法的程序化、标准化、机械化和自动化的算法化思想,却深刻地影响人类本身,正是这种思想追求才导致上世纪计算机的创造发明,人类才能从繁琐的计算任务中解放出来,去做计算机不可能做的事情。所以,竖式笔算的理论价值与文化价值是不可磨灭的。 从本单元也可以看到,因为竖式除法笔算,我们才可能如此直观地发现无限循环小数的存在。在掌握小数除法竖式笔算的基础上,在有条件的学校和班级,可以更上一层楼,鼓励算法的灵活性和创造性,在发展数感上下功夫。2.第三单元“倍数与因数”“倍数与因数”是研究除0以外的自然数的关系与结构的。本单元的编写有下面两个基本特点。 (1)重视直观操作,发展抽象思维,促进数学理解如,利用百数表探索2,5或3的倍数特征,能强烈感觉2,5或3倍数的视觉模式,有助于规律的发现。用语言描述2,5或3的倍数特征,实际上就是提出数学命题。从百数表上归纳提出的2,5或3的倍数特征(命题),对于1-100的自然数而言是完全归纳,命题无疑是正确的,但对于任意的正整数,命题的正确性还需要通过验证。又如,“找因数”一课,先用小正方形拼摆长方形(或在方格纸上画长方形)的方法找因数,长方形本身就是乘法的几何直观。因此。这种直观操作有助于培养“找因数”的心理意象,把“找因数”具体操作的逻辑内化为抽象的思维逻辑。然后,再摆脱直观,探索直接用乘法或除法等数学方法找因数,促进思维从直观水平向抽象水平发展。(2)重视培养提出问题与发现问题的能力探索规律的数学活动为发现问题与提出问题提供了机会。发现规律就是发现问题,用语言或符号把规律描述出来就是提出问题。上述已经看到,探索5,2,3的倍数的特征的过程,就是发现问题提出问题(数学命题)的过程。在“找质数”一课,先分别找出2-12的自然数的全部因数,并列表记录。观察这个表格,有什么发现?又一次提供了发现问题与提出问题的机会。这就是从大于等于2的自然数中,发现一种新的分类标准,并用语言描述这个分类标准。以是否只有1与本身两个因数为分类标准,可以把大于等于2的自然数分成两类:一类是有且只有1与它本身两个因数的自然数,另一类是除了1与它本身两个因数外,还有其他因数的自然数。前者叫质数,后者叫合数。 为什么不把1归到质数这一类呢?如果规定1也是质数,那么任意一个合数表示为它的质因数的乘积的形式就不是唯一的;例如6=123,或者6=23。如果规定1不是质数,那么任意一个合数表示为它的质因数的乘积的形式是唯一的(这就是“数论”著名的算术基本定理)。所以,规定1不是质数,是建构理论的需要。3. 第五单元“分数的意义”在三年级初步认识分数的基础上,本单元在很多方面对分数的认识有了深化与发展。三年级已经知道分数可以表示整体与部分之间的关系,这个整体可以是一个物体,也可以是许多物体组成的一个集合;知道借助面积模型或集合模型直观地表示分数,并借助分数的面积模型可以比较简单分数的大小。在这个基础上,本单元在表示整体与部分之间关系方面,给分数的意义以明确的描述,即“把整体平均分成若干份份中的一份或几份,可以用分数来表示”,进一步体会分数的相对性;通过“分数墙”认识像,这样的分数是分数单位,这些分数单位都是比1更小的计数单位。因此,分数可以视为对分数单位进行计数的结果,如3个是,5个是(或1),8个是(或1)等。在生活中,我们还会遇到“把5张饼平均分给4个人”的分饼问题。每人能分到多少张饼呢?一种分法是每人都分到其中每一张饼的,一共有5个,所以每人都分到张饼;另一种分法是每人先分到1张饼,再分得1张饼的,所以每人分到1张饼。由此可见,分数与分数1是同一个分数的不同形式。以分数的分子是否小于分母为分类标准,可以把分数分成真分数与假分数(带分数)两类。在第一学段认识的分数,主要是分子比分母小的真分数。分数可以作为除法的商的意义,是本单元最具有实质性意义的发展。在分数范围内除法(除数不为0)总是可以施行,即ab=(b0)。这个关系使我们很容易找到两个整数(除数不为0)相除所得的商,如37=,解决了整数除法不能解决的问题。此外,这个除法与分数的关系,不仅可以用于假分数与带分数的相互转化,还可以用于把分数化为小数形式。本单元还探究了“分数基本性质”,即“分数的分子和分母同乘或除以一个不为0的数,分数的大小不变”。根据分数的基本性质,以是否是相等分数为分类标准,可以把分数分成无穷多个等价类。比如,=,其中、等,都是同一个分数的不同形式,它们的主要区别是分数单位不同。分数的基本性质也为分数的通分与约分提供了理论根据。通分可以把异分母分数转化为同分母分数,从而可以解决异分母分数比较大小的问题;约分则可以把分数化为最简分数。通分与约分是五年级下册学习分数的四则运算必备的基本技能。(二)图形与几何1.第二单元“轴对称与平移” 本单元“轴对称与平移”是在三年级认识“图形的运动”的基础上,对“轴对称与平移“进行再认识的。三年级是通过折纸、剪纸等具体操作,认识轴对称图形及其对称轴的;三年级的平移是实物(棋子、铅笔、三角尺)在方格纸上进行左右或上下方向的平移。 本单元是通过观察、操作等活动,进一步认识轴对称图形及其对称轴。能在方格纸上画出轴对称图形的对称轴;并进一步认识轴对称图形的特征:轴对称图形的任意一对对称点与对称轴之间的方格数相同(即对称点到对称轴的距离相等)。根据轴对称图形的这个特征,能在方格纸上补全一个简单的轴对称图形,能画出一个图形关于一条直线对称的图形。通过观察、操作等活动,在方格纸上认识图形的平移,探究简单图形在方格纸上平移的特征:图形按水平或垂直方向平移几格,图形的任意一点都按相同的方向平移相同的距离。根据图形平移的这个特征,能在方格纸上画出图形平移后的图形。 能从轴对称和平移的角度欣赏生活中美丽的图案,并运用它们在方格纸设计简单的图案。 2.第四单元“多边形的面积”“多边形的面积”这个单元是在三年级初步认识图形面积,知道方格纸是度量图形面积的基本策略,了解面积单位(1cm2,1dm2,1m2)及其关系,知道长方形与正方形面积计算公式的基础上,进一步探索平行四边形、三角形与梯形的面积。 平面图形面积的度量有两种基本的策略:一是用工具(如方格纸)度量,一是用公式度量。公式度量需要像长方形或正方形那样,先推导出计算面积的公式,进而根据面积公式度量图形有关要素的长度,再代入公式计算出面积。任何平面图形的面积都可以用工具度量,但不是所有的图形都可以用公式度量。本单元的重点不是工具度量,而是探索公式度量。经历探索平行四边形的面积公式的过程:用方格纸度量出一个平行四边形的面积;探索所得的面积与确定这个平行四边形的要素(两边以及一边上的高)之间有什么关系,猜想平行四边形的面积=底高;验证:任意的平行四边形都可以用割补法转化为长方形,转化前后图形的面积不变;长方形的长是原平行四边形的底,长方形的宽是原平行四边形底上的高,因此,推出平行四边形的面积=底高。进而,推导三角形和梯形的面积公式,关键是如何把三角形或梯形转化成已经学过的图形(即已经推导出面积公式的图形)。因此,在推导图形面积的过程,也是探究图形之间的联系,发展空间观念的过程。3.第六单元 “组合图形的面积”“组合图形的面积”单元与“多边形的面积”单元有密切的联系。 “多边形的面积”单元主要是推导图形的面积公式,推导的关键是把多边形转化为已学过的图形(已有面积公式的图形)。“组合图形的面积”是探究求组合图形或不规则图形面积的方法,关键也是把组合图形或不规则图形转化为已知图形,应用已知图形的面积公式求解。所以,这两个单元解决问题的基本思路是一脉相承。 多边形与组合图形之间没有明确的分界。梯形是多边形,但梯形也可以视为组合图形。所以,组合图形不下定义,在解决问题的过程中,可以体验把图形视为组合图形是一种解决问题的策略。 至于组合图形是由那些基本图形组合而成,可以仁者见仁,智者见智,与学习者个人的图形经验有关。探究“组合图形的面积”,就是要积累这方面的图形经验。教学时,要注意转化方法本身的合理性与简洁性。“探索活动:成长的脚印”是探索不规则图形的面积,有两种方法可以选择:一种方法是用方格纸度量,用方格纸度量的实质是把脚印转化成一个由方格组成的组合图形,并用这个组合图形的面积近似地表示脚印的面积。另一种方法可以在有脚印的方格纸上画一个规则图形,如梯形,计算出它的面积来近似地表示脚印的面积。(三)统计与概率1.第七单元“可能性”在四年级上册学习“可能性”的基础上,本单元进一步学习“可能性”。四年级的“可能性”是在具体情境中,通过实例感受简单的随机现象;通过试验、游戏等,感受随机现象结果发生的可能性有大有小,能够对一些简单的随机现象发生的可能性作出定性的描述,并进行交流。 本单元的“可能性”则是结合“谁先走”,探究游戏规则公平性的过程,能列出简单的随机现象中所有可能发生的结果,体会随机事件发生的等可能性,会判断游戏规则的公平性,会设计公平的游戏规则。本单元的“摸球游戏”的目的与四上的摸球游戏也不同,是通过收集、整理、分析摸球试验的数据,猜测、推断盒中两种颜色的球,哪种颜色的球多,哪种颜色的球少。遇到一些小组的推断不一致时,可以体会数据的随机性,当试验次数足够多的时候,数据才会呈现出稳定的规律性,体现实验概率是大数的规律。(四)综合与实践1.数学好玩(1)设计秋游方案教材以北京市区的小学为例,设计一个61人到故宫与北海公园参观的方案。各地学校应该明确任务:因地制宜,以小组为单位设计一个班级(人数确定)到当地两个景点参观的方案。小组讨论“设计方案”的各项要求,分工合作,利用课余时间收集必要的资料与数据,设计出秋游方案。通过课堂展示各小组设计的方案,选出合理的方案,或以一个小组的设计方案为基础,加以修改与完善。通过这个活动获得设计活动方案的活动经验与合作学习的体验。(2)图形中的规律包括“摆三角形”与“点阵中的规律”两个活动,都是运用字母表示数的思想方法,探索蕴含在图形中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 租赁高端珠宝合同范本
- 自家出售步梯合同范本
- 民间炒股合作合同范本
- 猫粮加工购买合同范本
- 物品翻新修理合同范本
- 通信铁塔拆除合同范本
- 民间借贷的易合同范本
- 广东省汕尾市高中消防安全测试题九(含答案)
- 江苏省南通市电影院消防安全测试题十七(含答案)
- 吉林省四平市小区消防安全测试题二(含答案)
- 中科大计算机网络郑烇课件
- 【教师必备】部编版六年级语文上册第二单元【集体备课】
- 海南经济特区工伤保险若干规定
- 部编版四年级上册习作《推荐一个好地方》课件
- 常用检验项目临床意义表
- 公路隧道建设施工技术规范学习考试题库(400道)
- 某水利水电工程二期混凝土施工监理细则
- 塑胶件外观缺陷检验培训
- 剪切工技能理论考试题库(含答案)
- 塔吊月检表优质资料
- 污水改排工程监理实施细则
评论
0/150
提交评论