




已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2016-2017学年浙江省杭州市上城区九年级(上)期末数学试卷一、选择题1下列事件是随机事件的是()A火车开到月球上B在地面上向空中抛出的石子会落下C2018年元旦当天杭州会下雨D早晨太阳从东方升起2若,则=()ABCD3在RtABC中,C=90,AC=3,BC=4,那么sinB的值是()ABCD4把抛物线y=x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()Ay=(x1)2+3By=(x+1)2+3Cy=(x+1)23Dy=(x1)235如图,为测量学校旗杆的高度,小东用长为3.2m的竹竿做测量工具,移动竹竿使竹竿和旗杆两者顶端的影子恰好落在地面的同一点A,此时,竹竿与点A相距8m,与旗杆相距22m,则旗杆的高为()A6mB8.8mC12mD30m6一个点到圆的最大距离为9 cm,最小距离为3 cm,则圆的半径为()A3 cm或6 cmB6 cmC12 cmD12 cm或6 cm7如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()Aa=bBa=2bCa=2bDa=4b8在利用图象法求方程x2=x+3的解x1、x2时,下面是四位同学 的解法:甲:函数y=x2x3的图象与X轴交点的横坐标x1、x2;乙:函数y=x2和y=x+3的图象交点的横坐标x1、x2;丙:函数y=x23和y=x的图象交点的横坐标x1、x2;丁:函数y=x2+1和y=x+4的图象交点的横坐标x1、x2;你认为正确解法的同学有()A4位B3位C2位D1位9如图,由等边三角形、正方形、圆组成的轴对称图案中,等边三角形与正方形的边长的比值为()AB3CD10己知抛物线y1=x2+1,直线y2=x+1,当x任取一值时,x对应的函数值分别为y1、y2,若y1y2,取y1、y2中的较小值记为M,若y1=y2,记M=y1=y2,例如:当x=1时,y1=0,y2=2,y1y2,此时M=0,下列判断:当x0时,x值越大,M值越小;使得M大于1的x值不存在;使得M=的x值是或;使得M=的x值是或,其中正确的是()ABCD二、选择题11圆心角为110,半径为6的扇形的面积是12若sin60cos=,则锐角=13如图,把ABC绕着点A顺时针方向旋转32,得到ABC,恰好B,C,C三点在一直线上,则么C=14一个密码箱的密码,每个数位上的数都是从0到9的自然数,若要使不知道密码的人一次就拨对的概率小于,则密码的位数至少需要位15ABC中,A=38,BD是AC边上的高,且BD2=ADCD,则BCA的度数为16己知抛物线y=(x2)2,P是抛物线对称轴上的一个点,直线x=t分别与直线y=x、抛物线交于点A,B,若ABP是等腰直角三角形,则t的值为三、解答题17如图,己知ABC(1)用直尺和圆规作出O,使O经过A,C两点,且圆心O在AB边上(不写作法,保留作图痕迹)(2)在(1)中,若CAB=30,B=60且O的半径为1,试求出AB的长18如图,小山岗的斜坡AC的坡度是,在与山脚C距离200米的D处,测得山顶A的仰角为26.6,求小山岗的高AB(结果取整数)参考数据:sin26.6=0.45,cos26.6=0.89,tan26.6=0.50)19己知:RtOAB在直角坐标系中的位置如图所示,点B的坐标为(4,2),P为OB的中点,点C为折线OAB上的动点,线段PC把RtOAB分割成两部分,问:点C在什么位置时,分割得到的三角形与RtOAB相似?要求在图上画出所有符合要求的线段PC,并求出相应的点C的坐标20一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字2,3,4,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验,实验数据如下表:摸球总次数20306090120180240330450“和为6”出现的频数10132430375882110150“和为6”出现的频数0.500.430.400.330.310.320.340.330.33解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为6”的频率将稳定在它的概率附近,估计出现“和为6”的概率是(2)当x=5时,请用列表法或树状图法计算“和为6”的概率(3)判断x=5是否符合(1)的结论,若符合,请说明理由,若不符合,请你写出一个符合(1)的x的值21大学生小韩在暑假创业,销售一种进价为20元/件的玩具熊,销售过程中发现,每周销售量少(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=2x+100(1)如果小韩想要每周获得400元的利润,那么销售单价应定为多少元?(2)设小韩每周获得利润为w(元),当销售单价定为多少元时,每周可获得利润最大,最大利润是多少?(3)若该玩具熊的销售单价不得高于34元,如果小韩想要每周获得的利润不低于400元,那么他的销售单价应定为多少?22研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,己知四边形ABCD内接于O,对角线AC=BD,且ACBD(1)求证:AB=CD;(2)若O的半径为8,弧BD的度数为120,求四边形ABCD的面积;(3)如图2,作OMBC于M,请猜测OM与AD的数量关系,并证明你的结论23如图,在平面直角坐标系xOy中,RtABC的直角顶点C在抛物线y=ax2+bx上运动,斜边AB垂直于y轴,且AB=8,ABC=60,当RtABC的斜边AB落在x轴上时,B点坐标是(3,0),A点恰在抛物线y=ax2+bx上(1)求AB边上的高线CD的长;(2)求抛物线解析式;(3)RtABC在运动过程中有可能被y轴分成两部分,当这两部分的面积之比为1:2时,求顶点C的坐标2016-2017学年浙江省杭州市上城区九年级(上)期末数学试卷参考答案与试题解析一、选择题1下列事件是随机事件的是()A火车开到月球上B在地面上向空中抛出的石子会落下C2018年元旦当天杭州会下雨D早晨太阳从东方升起【考点】随机事件【分析】根据事件发生的可能性大小判断相应事件的类型即可【解答】解:A、火车开到月球上是不可能事件;B、在地面上向空中抛出的石子会落下是必然事件;C、2018年元旦当天杭州会下雨是随机事件;D、早晨太阳从东方升起是必然事件,故选:C2若,则=()ABCD【考点】比例的性质【分析】设a=2k,进而用k表示出b的值,代入求解即可【解答】解:设a=2k,则b=9k=,故选A3在RtABC中,C=90,AC=3,BC=4,那么sinB的值是()ABCD【考点】锐角三角函数的定义【分析】先根据勾股定理求出AB的长,再运用锐角三角函数的定义解答【解答】解:在ABC中,C=90,AC=3,BC=4,AB=5,sinB=故选D4把抛物线y=x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()Ay=(x1)2+3By=(x+1)2+3Cy=(x+1)23Dy=(x1)23【考点】二次函数图象与几何变换【分析】根据二次函数图象平移的方法即可得出结论【解答】解:抛物线y=x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为:y=(x+1)2+3故选B5如图,为测量学校旗杆的高度,小东用长为3.2m的竹竿做测量工具,移动竹竿使竹竿和旗杆两者顶端的影子恰好落在地面的同一点A,此时,竹竿与点A相距8m,与旗杆相距22m,则旗杆的高为()A6mB8.8mC12mD30m【考点】相似三角形的应用【分析】竹竿、旗杆以及经过竹竿和旗杆顶部的太阳光线正好构成了一组相似三角形,利用相似三角形的对应边成比例即可求得旗杆的长【解答】解:如图,AD=8m,AB=30m,DE=3.2m;由于DEBC,则ADEABC,得:=,即 =,解得:BC=12m,故选:C6一个点到圆的最大距离为9 cm,最小距离为3 cm,则圆的半径为()A3 cm或6 cmB6 cmC12 cmD12 cm或6 cm【考点】点与圆的位置关系【分析】根据线段的和差,可得直径,根据圆的性质,可得答案【解答】解:点在圆外,圆的直径为93=6cm,半径为3cm,点在圆内,圆的直径为9+3=12cm,半径为6cm,故选:A7如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()Aa=bBa=2bCa=2bDa=4b【考点】相似多边形的性质【分析】根据对折表示出小长方形的长和宽,再根据相似多边形的对应边成比例列式计算即可得解【解答】解:对折两次后的小长方形的长为b,宽为a,小长方形与原长方形相似,=,a=2b故选B8在利用图象法求方程x2=x+3的解x1、x2时,下面是四位同学 的解法:甲:函数y=x2x3的图象与X轴交点的横坐标x1、x2;乙:函数y=x2和y=x+3的图象交点的横坐标x1、x2;丙:函数y=x23和y=x的图象交点的横坐标x1、x2;丁:函数y=x2+1和y=x+4的图象交点的横坐标x1、x2;你认为正确解法的同学有()A4位B3位C2位D1位【考点】估算一元二次方程的近似解【分析】根据方程x2=x+3的解为x1、x2,即方程x2x3=0的两个根为x1、x2,即可求解【解答】解:方程x2=x+3的解为x1、x2,即方程x2x3=0的两个根为x1、x2,对甲,函数y=x2x3的图象与X轴交点的横坐标x1、x2,即方程x2x3=0的两个根为x1、x2;对乙,函数y=x2和y=x+3的图象交点的横坐标x1、x2,即方程x2x3=0的两个根为x1、x2;对丙,函数y=x23和y=x的图象交点的横坐标x1、x2,即方程x2x3=0的两个根为x1、x2;对丁,函数y=x2+1和y=x+4的图象交点的横坐标x1、x2,即方程x2x3=0的两个根为x1、x2;故选A9如图,由等边三角形、正方形、圆组成的轴对称图案中,等边三角形与正方形的边长的比值为()AB3CD【考点】正多边形和圆【分析】由题意知:三个正方形的共用顶点即为圆的圆心,也是等边三角形的重心;可设等边三角形的边长为2x,作等边三角形,再根据三角形重心的性质即可得到正方形的对角线的长,求出正方形的边长,即可得出答案【解答】解:如图,设圆的圆心为O,由题意知:三角形的重心以及三个正方形的共用顶点即为点O过A作ADBC于D,则AD必过点O,且AO=2OD;设ABC的边长为2x,则BD=x,AD=x,OD=x;正方形的边长为: x,等边三角形与正方形的边长的比值是2x: x=,故选C10己知抛物线y1=x2+1,直线y2=x+1,当x任取一值时,x对应的函数值分别为y1、y2,若y1y2,取y1、y2中的较小值记为M,若y1=y2,记M=y1=y2,例如:当x=1时,y1=0,y2=2,y1y2,此时M=0,下列判断:当x0时,x值越大,M值越小;使得M大于1的x值不存在;使得M=的x值是或;使得M=的x值是或,其中正确的是()ABCD【考点】二次函数与不等式(组)【分析】错误观察图象可知当x0时,x值越大,M值越大正确因为y1=x2+1的最大值为1,所以使得M大于1的x值不存在错误使得M=的x值是或正确求出x=和时y的值即可判断【解答】解:错误观察图象可知当x0时,x值越大,M值越大故错误正确因为y1=x2+1的最大值为1,所以使得M大于1的x值不存在,故正确错误使得M=的x值是或,故错误正确x=时,y1=,y2=,M=,x=时,y1=,y2=+1,M=故选D二、选择题11圆心角为110,半径为6的扇形的面积是11【考点】扇形面积的计算【分析】利用扇形的面积公式即可直接求解【解答】解:扇形的面积是=11故答案是:1112若sin60cos=,则锐角=60【考点】特殊角的三角函数值【分析】根据特殊角三角函数值,可得答案【解答】解:由题意,得co=,得cos=,由是锐角,得=60,故答案为:6013如图,把ABC绕着点A顺时针方向旋转32,得到ABC,恰好B,C,C三点在一直线上,则么C=74【考点】旋转的性质【分析】利用旋转的性质得出AC=AC,以及CAC的度数,再利用等腰三角形的性质得出答案【解答】解:由题意可得:AC=AC,把ABC绕着点A顺时针方向旋转34,得到ABC,点C刚好落在边BC上,CAC=32,ACC=C=74故答案是:7414一个密码箱的密码,每个数位上的数都是从0到9的自然数,若要使不知道密码的人一次就拨对的概率小于,则密码的位数至少需要4位【考点】概率公式【分析】分别求出取一位数、两位数、三位数、四位数时一次就拨对密码的概率,再根据所在的范围解答即可【解答】解:解:因为取一位数时一次就拨对密码的概率为;取两位数时一次就拨对密码的概率为;取三位数时一次就拨对密码的概率为;取四位数时一次就拨对密码的概率为故一次就拨对的概率小于,密码的位数至少需要4位故答案为:415ABC中,A=38,BD是AC边上的高,且BD2=ADCD,则BCA的度数为52或128【考点】相似三角形的判定与性质【分析】根据相似三角形的判定,由已知可判定ADBBDC,进而求出A=CBD,即可求BCA的度数【解答】解:有两种可能:ABC为锐角三角形或钝角三角形时,当ABC为锐角三角形时,BD2=ADCD,BD是AC边上的高,ADB=CDB=90,ADBBDC,A=CBD,A=38,CBD=38,BCA=BDCCBD=9038=52当ABC为钝角三角形时,BD2=ADCD,BD是AC边上的高,ADB=CDB=90,ADBBDC,CBD=38,BCA=BDC+CBD=90+38=128;故答案为:52或12816己知抛物线y=(x2)2,P是抛物线对称轴上的一个点,直线x=t分别与直线y=x、抛物线交于点A,B,若ABP是等腰直角三角形,则t的值为0或3或或或【考点】二次函数的性质;一次函数图象上点的坐标特征;等腰直角三角形【分析】首先求出抛物线与直线y=x的交点坐标,再分四种情形列出方程即可解决问题【解答】解:由解得或,根据的通知解三角形的性质可知当AB=|PxAx|或AB=2|PxAx|时,PAB可以是等腰直角三角形当0x1时,(t2)2t=2t或(t2)2t=2(2t),解得t=2或0,当1t2时,t(t2)2=2t或t(t2)2=2(2t),解得t=3或,当2t4时,t(t2)2=(t2),或t(t2)2=2(t2),解得t=2+或3,当t4时,(t2)2t=t2或(t2)2t=2(t2),解得t=3+或,综上所述,满足条件的t的值为0或3或或或故答案为0或3或或或三、解答题17如图,己知ABC(1)用直尺和圆规作出O,使O经过A,C两点,且圆心O在AB边上(不写作法,保留作图痕迹)(2)在(1)中,若CAB=30,B=60且O的半径为1,试求出AB的长【考点】作图复杂作图;垂径定理【分析】(1)根据弦的垂直平分线经过圆心,可以先作出AC的垂直平分线,交AB于点O,再以O为圆心,AO长为半径画圆即可;(2)先连接CO,根据CAB=30,B=60,求得BCO=B=60,进而得到BO=CO=1,即可得出AB=2【解答】解:(1)如图所示,O即为所求;(2)如图所示,连接CO,CAB=30,B=60,ACB=90,又AO=CO=1,A=ACO=30,BCO=9030=60,BCO=B=60,BO=CO=1,AB=218如图,小山岗的斜坡AC的坡度是,在与山脚C距离200米的D处,测得山顶A的仰角为26.6,求小山岗的高AB(结果取整数)参考数据:sin26.6=0.45,cos26.6=0.89,tan26.6=0.50)【考点】解直角三角形的应用仰角俯角问题;解直角三角形的应用坡度坡角问题【分析】首先在直角三角形ABC中根据坡角的正切值用AB表示出BC,然后在直角三角形DBA中用BA表示出BD,根据BD与BC之间的关系列出方程求解即可【解答】解:在直角三角形ABC中,=,BC= 在直角三角形ADB中,tan26.6=0.50,BD=2AB BDBC=CD=200, 解得:AB=300米 小山岗的高度为300米19己知:RtOAB在直角坐标系中的位置如图所示,点B的坐标为(4,2),P为OB的中点,点C为折线OAB上的动点,线段PC把RtOAB分割成两部分,问:点C在什么位置时,分割得到的三角形与RtOAB相似?要求在图上画出所有符合要求的线段PC,并求出相应的点C的坐标【考点】相似三角形的判定;坐标与图形性质【分析】由于C点不确定,故分OPCOBA,BPCBOA,OPCOAB三种情况进行讨论【解答】解:点B的坐标为(4,2),OA=4,AB=2,OB=2,OP=如图,当OPCOBA时,=,即=,PC=1,OC=2,C1(2,0);当BPCBOA时,=,即=,解得BC=2,AC=11=1,C2(4,1);当OPCOAB时,=,即=,解得OC=2.5,C3(2.5,0);综上所述,C点坐标为:(2,0)或(4,1)或(2.5,0)20一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字2,3,4,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验,实验数据如下表:摸球总次数20306090120180240330450“和为6”出现的频数10132430375882110150“和为6”出现的频数0.500.430.400.330.310.320.340.330.33解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为6”的频率将稳定在它的概率附近,估计出现“和为6”的概率是0.33(2)当x=5时,请用列表法或树状图法计算“和为6”的概率(3)判断x=5是否符合(1)的结论,若符合,请说明理由,若不符合,请你写出一个符合(1)的x的值【考点】模拟实验;频数(率)分布表;列表法与树状图法【分析】(1)根据实验次数越大越接近实际概率求出出现“和为6”的概率即可;(2)根据小球分别标有数字2、3、4、x,用列表法或画树状图法说明当x=5时,得出数字之和为6的概率,即可得出答案;(3)根据(1)(2)的结果可得出结论【解答】解:(1)利用图表得出:实验次数越大越接近实际概率,所以出现“和为6”的概率是0.33;(2)当x=5时,如图,共有12种情况,和是6的情况共2种,“和为6”的概率=;(3)由(2)可知x=5是不符合(1)的结论,当x=2,3,4时均符合21大学生小韩在暑假创业,销售一种进价为20元/件的玩具熊,销售过程中发现,每周销售量少(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=2x+100(1)如果小韩想要每周获得400元的利润,那么销售单价应定为多少元?(2)设小韩每周获得利润为w(元),当销售单价定为多少元时,每周可获得利润最大,最大利润是多少?(3)若该玩具熊的销售单价不得高于34元,如果小韩想要每周获得的利润不低于400元,那么他的销售单价应定为多少?【考点】二次函数的应用【分析】(1)根据“总利润=单件利润销售量”列出方程,解方程可得;(2)根据以上关系列出函数解析式,配方成顶点式可得答案;(3)根据每周获得的利润不低于400元,即w400列出不等式求解可得【解答】解:(1)根据题意可得:(x20)(2x+100)=400,解得:x=30或x=40,答:销售单价应定为30元或40元;(2)w=(x20)(2x+100)=2x2+140x2000=2(x35)2+450,当x=35时,w取得最大值,最大值为450元,答:当售价为35元/台时,最大利润为450元;(3)根据题意有:(x20)(2x+100)400,解得:30x40,又x34,30x34,答:他的销售单价应定为30元至34元之间22研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,己知四边形ABCD内接于O,对角线AC=BD,且ACBD(1)求证:AB=CD;(2)若O的半径为8,弧BD的度数为120,求四边形ABCD的面积;(3)如图2,作OMBC于M,请猜测OM与AD的数量关系,并证明你的结论【考点】圆内接四边形的性质;垂径定理【分析】(1)根据弦、弧、圆心角的关系证明;(2)根据弧BD的度数为120,得到BOD=120,利用解直角三角形的知识求出BD,根据题意计算即可;(3)连结OB、OC、OA、OD,作OEAD于E,如图3,根据垂径定理得到AE=DE,再利用圆周角定理得到BOM=BAC,AOE=ABD,再利用等角的余角相等得到OBM=AOE,则可证明BOMOAE得到OM=AE,证明结论【解答】(1)证明:AC=BD,=,则=,AB=CD;(2)解:连接OB、OD,作OHBD于H,弧BD的度数为120,BOD=120,BOH=60,则BH=OB=4,BD=8,则四边形ABCD的面积=ACBD=96;(3)AD=2OM,连结OB、OC、OA、OD,作OEAD于E,如图2,OEAD,AE=DE,BOC=2BAC,而BOC=2BOM,BOM=BAC,同理可得AOE=ABD,BDAC,BAC+ABD=90,BOM+AOE=90,BOM+OBM=90,OBM=AOE,在BOM和OAE中,BOMOAE,OM=AE,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育直播平台在线教育监管政策与2025年合规运营指南报告
- 2025高级生命支持(ACLS)理论考核试题库及答案
- 离婚协议书(协议离婚及共同财产分割及子女抚养)
- 离婚协议中关于人寿保险权益分割及收益分配协议
- 离婚房产分割与婚姻解除后续事宜处理服务合同
- 合同管理制度培训与合同管理实务操作技巧
- 基于绩效考核的劳动合同与聘用合同签订差异分析
- 幼儿园园长聘任与幼儿园环境创设服务合同
- 并行素数检测优化-洞察及研究
- 5G远程维修设备集成研究-洞察及研究
- 2025年广东省中考物理试题卷(含答案)
- 第一单元 写作《热爱写作学会观察》课件 学年统编版语文七年级上册
- 钙钛矿有机叠层太阳能电池界面工程与载流子传输机制
- 病媒生物防培训课件
- 2025秋人教版(2024)八年级上册地理 【教学课件】1.1.1 《疆域》
- 《生产运营管理》 课件 第15章-数字化转型背景下生产运营模式
- 净菜加工培训
- 中国肿瘤药物相关血小板减少诊疗专家共识(2023版)
- 皮带厂车间管理制度
- 2025年福建省中考英语试卷真题(含标准答案)
- 2026年高考作文备考之题目解析及范文:“如果……就不妙了”转变为“即使……也没什么”
评论
0/150
提交评论