对参加《线性代数》精品课程培训的心得与体会_第1页
对参加《线性代数》精品课程培训的心得与体会_第2页
对参加《线性代数》精品课程培训的心得与体会_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1/3对参加线性代数精品课程培训的心得与体会三天的线性代数精品课程培训马上就要结束了,时间虽然短暂,但给我的触动是很深的,启示是很大的。首先,是关于行列式的问题,李老师从全新的角度给出了全新的定义。象李老师描述的一样,我深有同感。几乎所有的线性代数教材在介绍行列式时都是通过解二元及三元一次线性方程组而引入的,曾经有一个学生课后验证四元一次线性方程组后跟我说和行列式不符。我觉得用方程组引入行列式定义有两个困惑第一,二元及三元一次线性方程组的求解学生早在初中就很熟悉,非要用商的形式表达解有点化简单为烦琐的味道。第二,即使解出系数行列式,也很难观察归纳总结出一般规律。基于以上两点考虑,每次讲到行列式定义时,我都是在讲完全排列,逆序数后直接给出行列式的定义。由于理解上本身就有难度,所以我在讲解时给出详细的注释行列式就是一个数,只是得来的过程有点麻烦;行列式具体说就是取自所有不同行不同列的N个元素乘积的代数和。然后按照定义,和学生们一起求出二阶和三阶行列式的计算公式,即对角线法则。而李老师从向量的角度,从几何上的面积空间立方体的体2/3积以及N维向量的体积角度给出了全新的定义,是一种全新的思想和理念。当然,由于教材编排顺序以及学生接受程度的差异,要仿效和实施李老师的行列式的定义是很难的。但是李老师的数形结合、深入浅出、由几何到代数的思想却是培训留给我的最大的财富,使我对如何教好学生有了更深的体会。另外,关于线性方程组有解的判别条件,许多教材都是直接给出定理和证明,然后给出有唯一解、多解、无解等不同情况的相应例题。但是在具体讲课时,如果按照书上顺序,学生就会很被动的接受。而李红裔老师在讲解时,首先引入例子,将增广矩阵化为行最简形,再和方程对应起来,得出方程的解。然后让学生观察,引导学生试归纳出一般的推广结论。这种由特殊到一般的规律和方法更利于学生理解和掌握,通过实实在在的例子让学生在观察中思考与学习,发挥了学生的主动性、积极性甚至创造性。正如李老师引用的波利亚的那段话一样注意特殊情况的观察,能够导致一般性的结果,也可启发出一般性的证明方法。以上只是我的体会和收获中的一点点,这次培训不仅是我学习中的一次难忘的经历,也是宝贵的财富。我会以这次培训为契机,认真总结并学习两位老师的教学思想和理念,并将之贯穿于今后的教学中,努力钻研教材,尽可能从各个角度各个侧面理解课程内容,力求融会贯通;并站在学生的角度思考问题,学会引导和3/3启发学生,让学生们在学会知识的同时,更学会提出问题、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论