FPGA的现状及其发展趋势_第1页
FPGA的现状及其发展趋势_第2页
FPGA的现状及其发展趋势_第3页
FPGA的现状及其发展趋势_第4页
FPGA的现状及其发展趋势_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

FPGA技术正处于高速发展时期,新型芯片的规模越来越大,成本也越来越低,低端的FPGA已逐步取代了传统的数字元件,高端的FPGA不断在争夺ASIC的市场份额。本节从FPGA软、硬件来展望未来的FPGA设计技术,给读者留一个FPGA技术的宏观轮廓。1 未来可编程器件的发展趋势先进的ASIC生产工艺已经被用于FPGA的生产,越来越丰富的处理器内核被嵌入到高端的FPGA芯片中,基于FPGA的开发成为一项系统级设计工程。随着半导体制造工艺的不同提高,FPGA 的集成度将不断提高,制造成本将不断降低,其作为替代ASIC 来实现电子系统的前景将日趋光明。(1) 大容量、低电压、低功耗FPGA大容量FPGA 是市场发展的焦点。FPGA 产业中的两大霸主:Altera和Xilinx在超大容量FPGA上展开了激烈的竞争。2007年Altera推出了65nm工艺的StratixIII系列芯片,其容量为67200个L E (Logic Element,逻辑单元),Xilinx推出的65nm工艺的VitexVI系列芯片,其容量为33792个Slices (一个Slices约等于2个L E)。采用深亚微米(DSM)的半导体工艺后,器件在性能提高的同时,价格也在逐步降低。由于便携式应用产品的发展,对FPGA 的低电压、低功耗的要日益迫切。因此,无论那个厂家、哪种类型的产品,都在瞄准这个方向而努力。(2) 系统级高密度FPGA随着生产规模的提高,产品应用成本的下降,FPGA 的应用已经不是过去的仅仅适用于系统接口部件的现场集成,而是将它灵活地应用于系统级(包括其核心功能芯片)设计之中。在这样的背景下,国际主要FPGA 厂家在系统级高密度FPGA 的技术发展上,主要强调了两个方面:FPGA 的IP( Intellec2tual Property ,知识产权)硬核和IP软核。当前具有IP内核的系统级FPGA的开发主要体现在两个方面:一方面是FPGA 厂商将IP硬核(指完成版图设计的功能单元模块)嵌入到FPGA 器件中,另一方面是大力扩充优化的IP软核(指利用HDL语言设计并经过综合验证的功能单元模块),用户可以直接利用这些预定义的、经过测试和验证的IP 核资源,有效地完成复杂的片上系统设计。(3) FPGA和ASIC出现相互融合虽然标准逻辑ASIC 芯片尺寸小、功能强、功耗低,但其设计复杂,并且有批量要求。FPGA价格较低廉,能在现场进行编程,但它们体积大、能力有限,而且功耗比ASIC大。正因如此,FPGA和ASIC正在互相融合,取长补短。随着一些ASIC制造商提供具有可编程逻辑的标准单元,FPGA 制造商重新对标准逻辑单元发生兴趣。(4) 动态可重构FPGA动态可重构FPGA是指在一定条件下芯片不仅具有在系统重新配置电路功能的特性,而且还具有在系统动态重构电路逻辑的能力。对于数字时序逻辑系统,动态可重构FPGA的意义在于其时序逻辑的发生不是通过调用芯片内不同区域、不同逻辑资源来组合而成,而是通过对FPGA 进行局部的或全局的芯片逻辑的动态重构而实现的。动态可重构FPGA在器件编程结构上具有专门的特征,其内部逻辑块和内部连线的改变,可以通过读取不同的SRAM中的数据来直接实现这样的逻辑重构,时间往往在纳秒级,有助于实现FPGA系统逻辑功能的动态重构。2 未来EDA设计方法的发展趋势电子产业瞬息万变, 随着新一代FPGA芯片工艺和设计方法的进步及新的应用领域和市场需求的变化, EDA技术也有突飞猛进的发展,总的趋势可以概括为:跨越器件组,甚至公司界限,越来越人性化的设计,越来越高的优化水平,越来越快的仿真速度,越来越高的仿真精度以及完备的分析验证手段。(1) 一体化工具和IP 是发展方向一体化的工具使用户受益于一个统一的用户界面, 避免了在不同的工具间进行数据转换等繁琐的操作。目前,各大EDA 工具供应商分别推出了集成众多工具在内的一体化设计工具, 同时也在分别推出各自的标准数据库,以进一步简化设计流程。未来先进的IC设计平台, 将整合各个公司的许多工具, 覆盖了从设计编译、布局编译、物理编译、DFT 编译以及硅片制造的全部流程, 同时还在内部集成了向第三方开放的数据库, 将不同设计阶段中的数据、时序、计算以及种种约束条件协调起来, 将集成新的模拟和混合信号设计工具,加强利用EDA 工具进行模拟电路设计的能力。IP 的合理应用是加速产品设计流程的一个有效途径。按照美国EDA联盟(The EDA Consortium)的统计数据表明, IP产品的销售额是全球EDA 工业中增加最快的一个领域。IP 应用是IC 设计业中绝对的发展趋势。(2) System Verilog 将成为下一代的描述语言描述语言一直是EDA业中重要的一环,VHDL和Verilog目前是中国的主流设计语言。然而, 随着IC 复杂度的不断提高,高级语言将成为FPGA开发的利器,从更高层次入手对系统进行描述是描述语言未来的发展方向。“System Verilog将最终取代VHDL。”这是Synopsys公司对描述语言发展方向上的预测, 在进一步解释这一预测时,还指出多年来FPGA设计中更关注的是仿真,而目前验证整个设计周期中已经占据了60%甚至更多的时间,而System Verilog可以有效地支持上述两者的需求,同时System Verilog是与Verilog完全兼容的。系统级设计方法除了需要使用高级HDL语言外,更重要的是要得到系统级仿真、综合工具的强力支持。目前Verilog HDL语言发展迅猛,并逐步完善。(3) EsL 将撑起EDA 产业大旗ESL指的是电子级系统设计。软件挑战是ESL身后的关键推动力。多处理器系统级芯片必须并行编程,EsL的目标是单一高级别模型的协同软硬件设计。未来几年全球ESL 工具营收将显著增长,将与RTL工具持平。三种主要的EsL方法学分别围绕算法、处理器与存储器、控制逻辑。它们均包含行为级与架构级设计,分别面向不同的工具及供应商。(4) Linux提速进入EDA领域随着EDA 技术在全球范围内的飞速发展,业界都在翘首以待基于Linux 环境的EDA 技术成为电路设计领域的主流。首先,由于Linux 费用很低,源代码开放,这使得EDA 软件的前期开发费用很低,而且运行维护的成本也很低,同时大大方便了工程师的设计工作。而Linux 工作站的费用也要比Unix 工作站便宜很多。此外,Linux的成本大约是Unix以及Windows 的1/151/10,但是效能并不比后者差,甚至运行速度要更快一些。现在业界普遍的看法就是预计在未来的5年内,Linux 将成为EDA 的主角。可以预见,Linux 的普及只是时间问题。(5) 模块化、增量式设计成为主流模块化设计适用于团队开发设计内部关系易于划分、模块间连接较少的项目。模块化设计先进行整体设计,各模块使用黑盒子代替,只指明模块间的连接(使用“伪逻辑”(pseudo logic)连接)和整体设计的外部端口,并约束各模块在FPGA芯片内部的区域位置和时序、外部端口引脚。之后并行的依据约束完成各自的模块设计,最后提交到一起进行整体的组合(assemble)。增量式设计是一种能在小范围改动情况下节约综合、实现时间并集成以往设计成果的设计手段。包括增量综合和增量实现两个层次的含义。 目前,Xilinx公司和Altera公司的模块化、增量式设计已经逐步成熟,在实际中开始得到应用,可以通过相关集成开发环境的Help菜单得到更详细的说明。 根据GartnerDataquest的分析报告显示:2005年ASIC和FPGA/PLD的增长率分别为3.9%和5.8%,而2006年,两者的增长率分别达到8.3%和13.4%。可以看到FPGA的发展速度明显高于ASIC。随着两大FPGA巨头Xilinx和Altera争相推出65nm工艺FPGA芯片Virtex-5以及StratixIII系列,FPGA迎来了空前繁荣的时代。同时,先进的工艺使得ASIC的开发成本不断上升,加上市场对于设计灵活性和上市时间的迫切需求,进一步促进了FPGA应用领域的不断扩大。越来越多的系统厂商选用FPGA来实现最终产品,或者为大型ASIC和SoC设计作初期的原型设计。 有关统计显示,未来消费电子(包括HDTV和无线应用等)和汽车电子是FPGA应用领域中成长最快的。人们期盼FPGA的成本更低、功耗更低、性能更高,这同时也意味着FPGA的设计日趋复杂,器件的密度越来越高,时序收敛问题也日益突出,这些问题都在挑战着FPGA开发工具的性能。很多设计还要集成更多的IP应用甚至是CPU或者DSP内核,FPGA向大规模系统芯片挺进,力求在大规模应用中取代ASIC。这都需要借助更为专业高效的工具来实现。 FPGA开发工具包括软件开发工具和硬件开发工具两类。其中硬件开发工具主要是FPGA厂商或第三方厂商开发的FPGA开发板及相关调试下载工具,另外,逻辑分析仪和示波器等也常常用于FPGA开发过程中的调试阶段。在软件开发工具方面,针对FPGA设计的各个阶段,FPGA厂商和EDA软件公司提供了很多优秀的EDA工具。一般来说,FPGA厂商提供的开发环境可以涵盖从源代码编写到最后仿真调试的各个阶段,对于不算十分复杂的FPGA设计,可以利用这类的开发环境进行FPGA的开发设计,但是EDA厂商提供的专用工具显然具有更大的优势,可以替代厂商自带开发工具的各个设计阶段,从而充分地利用FPGA的设计资源,并加速整个设计的进展。事实上,在Xilinx发布Virtex-4/Virtex-5系列产品的同时,也推荐客户使用专业的EDA工具,例如Synplicity的综合工具SynplifyPro和物理综合工具SynplifyPremier,以便充分发挥芯片的性能。 设计工具市场 今天的FPGA提供大容量,超高速的性能,针对不同领域优化的多平台FPGA以其革命性的能力促使FPGA技术加速进入更多的应用领域中,并大大缩短了产品的上市时间。今后五年内,基于FPGA的系统设计将增长30%,尤其在消费电子如高清电视里的应用非常广泛,而采用FPGA做ASIC的原型设计也成为节省成本和缩短原型设计时间的流行手段。Synplicity的资料显示,在该公司广泛分布于消费电子、电信、计算机和设计服务领域的客户中,有45%的客户采用FPGA来设计他们的产品,而采用传统Cell-basedASIC的客户则占32%,还有23%在使用门阵列。随着器件复杂性的增加,设计人员需要更精密复杂的工具,定位在FPGA设计上的EDA工具也面临着更大的发展契机。 Synplicity设计工具 目前,FPGA芯片的发展趋势主要集中在几个方面: 向更高容量,更大密度的系统级迈进; 向低成本,低电压,微功耗,微封装方向发展; MCU,DSP,ARM等嵌入式处理器IP更多的集成在FPGA中; FPGA芯片的接口越来越丰富; FPGA的基本开发流程包括:设计输入,设计仿真,设计综合,布局布线,配置,调试六个步骤。 在这6个步骤中,设计仿真、设计综合和调试是最重要的步骤。其中,综合工具的性能更是对设计的结果有直接的影响。 随着FPGA芯片的容量越来越大,复杂度不断提升,功能要求越来越复杂,对FPGA开发工具的要求也提出了挑战。以Xilinx为例,为了应对IPCore的开发和集成的需要,开发了IPCore生成工具CoreGenerator和IPCore包装工具IPCapture,提供了片内逻辑分析仪ChipscopeILA进行片内逻辑调试。而且SystemGenerator和Simulink一起使用还可以生成数字信号处理的FPGA硬件实现。为了适合团队开发和微量修改,还推出了增量设计流程供开发者使用。在ISE新的版本中,可以支持多CPU的处理器系统,以节约开发时间。 Synplicity的开发工具也不断推出新的版本,包含了一些有竞争力的特点: SynplifyPro的每个新版本都会在面积和性能上有一些提升,以充分利用和发挥FPGA的资源;SynplifyPro的多点综合流程可以很好的和ISE的增量设计流程一起使用,便于团队开发和设计修改。 SynplifyDSP可以和Simulink及Matlab一起使用,生成直接用于硬件实现的RTL源代码,一方面,可以加快产品的开发周期;另一方面,又可以节约购买专门的IP所带来的成本提升。 在调试领域,Identify比起厂商自带的工具Chipscope或者SignalTap也具有优势,主要体现在设计者可以直接在RTL源码级进行调试以及灵活的断点和触发点设置。 随着Xilinx和Altera深亚微米工艺FPGA芯片的推出,传统的综合工具不能充分发挥出这些芯片的优势,针对这一现状,Synplicity的SynplifyPremier物理综合工具显示出了较强的优势,由于可以在综合的同时进行布局以及预布线,因此,该工具可以提供更精确的时序估计,在提升设计性能的同时,提高设计修改的鲁棒性。 MentorFPGA开发工具 FPGA厂商一般都提供集成的开发环境,如AlteraQuartusII和XilinxISE,基本上可以完成所有的设计输入(原理图或HDL)、仿真、综合、布线和下载等工作。初期的用户较多采用它们,但它们在设计仿真和逻辑综合方面不够理想,因此一般都会提供第三方EDA工具的接口,让用户更方便地利用其他EDA工具。 为了提高设计效率,优化设计结果,很多EDA厂商提供了各种专业软件,用以配合FPGA芯片厂家提供的工具进行更高效的设计。EDA厂商也为FPGA厂商提供各自产品的定制版本,以满足中、低端用户的基本要求,比如MentorGraphics公司的逻辑仿真软件ModelSimXE/AE、逻辑综合工具Precision等。因为FPGA厂商集成的开发环境和OEM版本的工具在性能上有很大的限制,所以面对复杂度不断增加的高端设计,用户都逐渐采用专业的EDA开发工具和流程,如Mentor的FPGAAdvantage。 FPGA技术突飞猛进,新的开发工具更是层出不穷。工艺技术的发展直接推动着开发工具的变化,90nm以下的FPGA器件其连线延时占到总延时的75%以上,造成传统的逻辑综合工具在布线前后时序无法收敛,这导致了物理综合工具PrecisionPhysical的产生。SoC设计的发展对系统验证更是提出了巨大的挑战,系统级描述语言在验证方法上的巨大优势正逐渐替代现有的VHDL和Verilog环境,基于标准语言SystemVerilog和SystemC的验证工具将广为采纳并大行其道,Questa也因此应运而生。在系统的设计上特别是在信号处理和通信等领域,有大量的算法密集型设计,以往的方法是通过MATLAB和C+来研究算法,再手工编写成RTL代码,这满足不了产品上市时间的急迫需要,另外设计者对各种可用的RTL体系结构做出权衡的能力非常有限,而且C+模型与RTL描述之间还有很大差距,手工转换很容易引入错误。MentorGraphics的CatapultSL综合工具是成熟且市场份额领先的算法综合工具,能利用非定时的纯C+语言来产生高品质的RTL描述,速度最快可达到传统人工方式的20倍。 随着FPGA设计的日趋复杂,许多开发项目不再是一、两位工程师参与开发,而是由多位工程师组成的设计团队参与项目前端设计,甚至还有很多跨地域的设计合作需要,同时IP或者内部设计模块的复用也已经成为大规模芯片设计必不可少的手段。如何应对日益增长的设计复杂性和设计可管理性,已经成为FPGA开发工程师和项目经理需要迫切解决的问题。HDLDesigner工具提供了整合式设计和管理解决方案,从设计输入、设计复用、设计规则检查到文档生成和版本控制以及数据和流程的管理。 FPGAIDE开发工具 FPGAAdvantage集成开发环境把Mentor三个工具HDLDesignerSeries、Modelsim和Precision紧密结合在一起,涵盖设计的创建、仿真、综合、布局布线以及文档和设计的管理。 除了FPGAAdvantage之外,Mentor在中国市场主推的产品包括Questa高级验证平台、Seamless软硬件协同验证平台、PrecisionPhysical物理综合工具和CatapultSL算法综合工具。 AltiumDesigner:FPGA板级系统一体化开发工具 嵌入式“智能”的兴起 微处理器出现带动了电子产品开发的革命,因为可以把设计问题的各个部分转移到高度灵活、易于升级的软件功能上。所以,开发电子产品的本质只剩下了两个设计层次,第一层是使用印刷电路板(PCB)上的分立器件搭建物理平台,第二层则涉及到设计中可编程部分的开发,并在设计中或制造后将它们“装载”进物理设计中去。 可编程器件如FPGA的兴起,重新定义了软件和硬件间的界线,也让工程师重新思考如何在产品中添加“智能”。基本上,这些可编程部分包括设计内运行在执行平台上的嵌入式软件,以及在FPGA等器件上实现的可配置硬件。随着越来越多功能从分立器件转移到可编程领域,牵涉到的各种设计也要融合在一起。 这也是Altium公司在原先Protel系列的基础上推出一体化开发系统AltiumDesigner的原因。AltiumDesigner在单一的设计环境中集成了板级和FPGA系统设计、基于FPGA和分立器件的嵌入式软件开发以及PCB板图设计、编辑和制造。 灵活的设计 Altium中国区总经理曲刚解释说:“传统的FPGA开发工具使用取决于工程师的HDL设计经验和对可编程器件体系的结构知识,并且大量的功能IP模块的源码和评估也是一大挑战。”所以设计流程在概念上与使用硬连接在PCB板上的器件有极大的不同。AltiumDesigner将电路功能从板卡转移到FPGA等可编程器件,FPGA内部的逻辑可以改变和重新配置,在板级设计时可不受硬连接器件的限制。 在AltiumDesigner中,可采用原理图编辑器将大量预置的FPGA器件连接在一起创建电路设计。 AltiumDesigner包含器件范围从通用的逻辑功能器件(计数器、乘法器和各种逻辑门)到完整的32位处理器和高级外设。使用这些器件无需考虑版权问题,这排除了从FPGA供应商获得IP的困难。 AltiumDesigner是一个独立的设计环境,用户在使用FPGA构件系统功能时,可以把设计定位于面向多个不同公司的FPGA,包括Actel、Altera、Lattice和Xilinx。AltiumDesigner的用户可以不固定于某一个FPGA供应商或产品系列,从而在FPGA之间移植设计,抓住机会,规避风险。 除了通过预置FPGA创建需要的系统功能,AltiumDesigner可通过VHDL和Verilog硬件描述语言输入设计逻辑,创建IP模块和定义特定逻辑功能,并以图形化的方式放进原理图编辑器中,或者将生成的逻辑模块加入到AltiumDesigner的FPGA库中。 AltiumDesigner在最新版本中添加了对第三方处理器的支持。主要FPGA供应商提供的大量软处理器都是定位于自己的FPGA系列,虽然性能更高,但是用户被锁定在特定的FPGA器件上。第三方处理器支持是指可以将第三方应用程序生成的FPGA软处理器(像Xilinx的CoreGenerator和Altera的MegafunctionWizard)导入AltiumDesigner一体化的开发系统中。导入向导解决了与导入第三方核心设计关联的问题,智能地导入必需的文件,更新目标项目结构。 一体化开发流程 AltiumDesigner一体化开发的特性集中体现在FPGA设计和集成它的板卡设计的无缝连接。AltiumDesigner统一了FPGA和PCB设计流程,支持两者之间的I/O同步。当FPGA还未开发时,用户在没有FPGA配置的情况下开始PCB物理设计步骤,而在FPGA过程中,新的引脚和I/O分配可转换到PCB设计项目,FPGA原理图可自动更新,反映出新的I/O定义。 作为一体化开发流程的一部分,AltiumDesigner还提供了一组FPGA虚拟仪器。AltiumDesigner中,FPGA作为预先验证和综合的逻辑模块,可直接从库中提取和使用,但是用户依然需要测试这些器件构成的系统整体功能。FPGA虚拟仪器使用方法与板级平台测试仪器的使用方法类似,用户在运行内部对连接点进行检测和仿真。虚拟仪器同样是预先集成的逻辑模块。为了简化对系统仿真的依赖,AltiumDesigner添加了叫做“LiveDesign”的交互开发流程,用来调试FPGA系统设计。 AltiumDesigner对开发流程的统一延伸到了处理器的嵌入式软件设计。用户可以创建并编辑代码、编译和仿真程序,自系统上进行完整的源代码调试。AltiumDesigner包含所有支持处理器的完整编译工具。 一 绪言 自1985年Xilinx公司推出第一片现场可编程逻辑器件()至今,FPGA已经历了十几年的历史。在这十几年的发展过程中,以FPGA为代表的数字系统现场集成取得了惊人的发展:现场可编程逻辑器件从最初的1200个可利用门,发展到90年代的25万个可利用门,乃至当新世纪来临之即,国际上现场可编程逻辑器件的著名厂商Altera公司、Xilinx公司又陆续推出了数百万门的单片FPGA芯片,将现场可编程器件的集成度提高到一个新的水平。纵观现场可编程逻辑器件的发展历史,其之所以具有巨大的市场吸引力,根本在于:FPGA不仅可以解决电子系统小型化、低功耗、高可靠性等问题,而且其开发周期短、开发软件投入少、芯片价格不断降低,促使FPGA越来越多地取代了ASIC的市场,特别是对小批量、多品种的产品需求,使FPGA成为首选。 目前,FPGA的主要发展动向是:随着大规模现场可编程逻辑器件的发展,系统设计进入片上可编程系统(SOPC)的新纪元;芯片朝着高密度、低压、低功耗方向挺进;国际各大公司都在积极扩充其IP库,以优化的资源更好的满足用户的需求,扩大市场;特别是引人注目的所谓FPGA动态可重构技术的开拓,将推动数字系统设计观念的巨大转变。 二 Xilinx公司研制开发的FPGA系列产品的主要特征 Xilinx公司自发明FPGA以来,就不断的推出新器件和开发工具,力求芯片的速度更高、功耗更低。在其新近开发的产品中,Xilinx重新定义了未来的可编程逻辑,为用户提供2.5v,3.3v和5v可编程逻辑系列选择,并利用先进的0.18-、0.22-、0.25-、0.35um工艺技术生产出低成本、高性能的可编程逻辑产品。主要推出了Virtex系列和SpantanTM系列的FPGA。Virtex系列突破了传统FPGA密度和性能限制,使 FPGA不仅仅是逻辑模块,而成为一种系统元件(如图一所示)。 而SpantanTM系列为替代ASIC的大容量FPGA树立了一个新的低成本标准。 图1 Virtex系列使FPGA从连接逻辑提升至系统的核心部件 Virtex 系列FPGA集成了许多满足系统级设计要求的新性能,具有独特的结构特点如图2。整个Virtex系列由九种器件组成,系统门数从5万到100万门(1,728到27,648个逻辑单元);提供给用户的I/O引脚数最多超过500个;采用多种封装形式,包括先进的1.0mm FinePitchTMBGA和0.8mm芯片封装;采用5层金属的0.22微米CMOS工艺,实现5V容差的I/O接口;借助于优选的时序驱动的布局和布线工具,在400MHz的PCPU上,编译速度可达20万门/秒。 图2 Virtex系列的内部结构 Virtex系统的独特结构使它具有以下一些重要性能: 拥有四重数字化延时锁定电路(DLL),用于内外时钟同步;使芯片到芯片间的通讯速度达到200MHz;所有器件从时钟到输出的延时均小于3ns;时钟可倍频和分频,可进行00,900,1800,2700相移。 各种密度产品均设置向量式互连,使布线快速可预测,与内核配合良好。 Virtex支持3级存储。它的SelectRAM+存储层为字节级(分布式存储)、千字节级(块存储)和兆字节级(与外部DRAM和SRAM的SSTL3接口)存储块提供很高的频宽。 采用SelectI/OTM技术,同时支持多种电压和信号标准。 兼容66MHz/64比特PCI和Compact PCI。本文相关DataSheet: 在推出Virtex 之后不到一年,Xilinx又推出了Virtex-E系列产品,其性能和密度可与ASIC匹敌。Virtex-E系列产品的主要特点是:拥有 320万个系统门;832k位的真双端口内部块状RAM;8个DLL并支持超过20种不同的信号标准,包括LVDS、Bus LVDS以及LVPECL;采用0.18um工艺制造,在单个器件上实现了2.1亿个晶体管的密度。总之,Virtex和Virtex-E 系列不仅将FPGA性能推向一个新层面,还解决了向系统集成的挑战。 Xilinx产品的另一个方向是实现可编程逻辑器件在大批量生产中的应用,所以对成本要求更高。Spartan系列是以XC4000系列结构为基础,并结合了片上RAM 、强大的IP库支持和大容量、低价格的特点,使其可在大批量生产中替代ASIC。 Spartan系列的主要特点是:系统门数可达40,000门;灵活的片上存储器,分布式和块存储器;4个数字延迟锁相环,有效的芯片级/板级时钟管理;Select I/O保证同所有主要总线标准如HSTL、GTL、SSTL等的接口;具有功率管理(睡眠模式)。 三 Altera公司研制开发的FPGA系列产品的主要特征 Altera公司自从事FPGA的开发研制以来,不断的进行技术创新,研制开发新产品。该公司的基于CMOS的现场可编程逻辑器件同样具有高速、高密度、低功耗的特点。近期,Altera公司主要有四个品种系列:胶合(glue)逻辑类的MAX,低价位的ACEX系列、高速FLEX系列、高密度的APEX 系列。 欢迎访问Altera 公司针对通信市场推出的新型低成本器件-ACEX系列(以前的名称是ACE)。该系列的主要特点为:密度范围从1万到10万门(56,000到 257,000系统门);配备锁相环(PLL),与64位、66MHZ的PCI兼容;产品系列从原1.8v扩展至2.5v;提供系统速度超过115MHZ 的高性能。 Altera公司还对FPGA的结构进行优化,提供更多的嵌入式RAM。新近推出的FLEX 10KE系列器件是以前的FLEX 10K系列器件的增强型,该系列在结构上采用了与FLEX 10K系列相同的逻辑块,但片内嵌入式RAM是FLEX 10K系列的两倍,而且增加了一个双端口RAM,这对通信应用来说是一个重要的优势所在。Altera公司预计该系列器件可用于66MHZ的工作频率,密度范围为3万25万门,能够用于66MHZ的PCI和通信应用。 Altera 公司的高密度APEX 20KE系列器件,其主要特点是:真正实现了的低压差信号(low-voltage differential signaling, LVDS)通道,并提供840兆比特的数据传输率。在APEX 20KE系列中的锁相环(PLL)可以提供多种LVDS。设计者可以在1,4,7和8数据传输模式中实现LVDS I/O标准。APEX 20KE LVDS界面如图3所示。 图3 APEX 20KE LVDS界面 另一方面,随着现场可编程逻辑器件越来越高的集成度,加上对不断出现的I/O标准、嵌入功能、高级时钟管理的支持,使得设计人员开始利用现场可编程逻辑器件来进行系统级的片上设计。Altera公司目前正积极倡导SOPC(System on a Progrmmable Chip,系统可编程芯片)。 片上可编程系统(SOPC)得到迅速发展,主要有以下几个原因: 1 密度在100万门以上的现场可编程逻辑芯片已经面市; 2 第4代现场可编程逻辑器件的开发工具已经成形,可对数量更多的门电路进行更快速的分析和编译,并可使多名设计人员以项目组的方式同步工作; 3 知识产权(IP)得到重视,越来越多的设计人员以设计重用的方式对现有软件代码加以充分利用,从而提高他们的设计效率并缩短上市时间;Altera公司为了实现SOPC的设计,不仅研制开发出新器件,而且还研制出新的开发工具对这些新器件提供支持,并且与新芯片及软件相配合的是带知识产权的系统级设计模块解决方案,它们的参数可由用户自己定义。芯片、软件及知识产权功能集构成了Altera完整的可编程解决SOPC方案- Excalibur解决方案,如图4给出了利用这一方案实现SOPC的流程图。 图4 简化的SOPC设计流程图 四Actel公司研制开发的系列产品的主要特征 Actel公司一直是世界反熔丝FPGA的领先供应商,主要有两大系列的反熔丝FPGA产品-SX-A 系列和MX高速系列。SX-A系列FPGA的主要特点是功耗低、在接上了所有内部寄存器之后,200MHZ运行时的功耗不到1w,而且价格也较为低廉、并拥有良好的性能。 SX -A(0.22/0.25um)和SX (0.35um) FPGA系列可以提供12,000到108,000个可用门;64-bit,66MHZ的PCI;330MHZ的内部时钟频率,4ns的时钟延迟,它的输入设置时间小于0.6ns,不需要逐步锁定的循环指令;可提供2.5v,3.3v和5v的电压。这就使FPGA能够具有一些以前无法实现的功能,使设计者能够把多个高性能的CPLD压缩到一片FPGA中,大大降低了功耗,节省了电路板空间,减少了费用。 另一方面,众所周知采用反熔丝技术的FPGA尽管具有许多优点,但是却有一个致命的弱点,即只能进行一次性编程。这就为大规模FPGA产品的开发带来了许多不便。为了弥补这一不足,近年来,Altel公司也在积极开发其它结构类型的FPGA产品。最具代表的是其新近推出了一种非易失性、可重新编程的门阵列 -ProASIC FPGAs。该系列产品集于高密度、低功耗、非易失性和可重新编程于一身。ProASIC FPGAs的主要特点是:提供98,000到110,000个可用门;内嵌拥有FIFO控制逻辑的两端口SRAM(容量达到138,000比特);提供大于200MHZ的内部时钟频率;该系列产品的功耗仅是基于SRAM的FPGA产品的1/3到1/2(如图5所示)。 图5 ProASIC与SRAM FPGA在相同频率下功耗的比较 五技术分析。 从以上对Xilinx、Altera和Actel三家公司各自开发产品特征的介绍,我们可以看出2000年以FPGA为代表的数字系统现场集成技术发展的一些新动向,归纳起来有以下几点 深亚微米技术的发展正在推动了片上系统(SOPC)的发展。越来越多的复杂IC需要利用SOPC技术来制造。而SOPC要利用深亚微米技术才能实现。随着深亚微米技术的发展,使SOPC的实现成为可能。与以往的芯片设计不同,SOPC需要对设计IC和在产品中实现的方法进行根本的重新评价。 新的SOPC世界要求一种着重于快速投放市场的,具有可重构性、高效自动化的设计方法。这种方法的主要要素是:1.系统级设计方法;2.高级的多处理器和特长指令字(VLIW);3.应用级映射和编译。但是,真正推动SOPC设计的将是系统级设计而不是特定的硬件或软件设计方法(如图6所示)。系统级设计是把一个应用当作一个并行的通信任务系统的设计。着重点放在设计活动的并行性以及在整个应用中利用高度并发的、平行的特性。在SOPC领域中所要求的关键技术是在这些平台上把一个应用的系统级描述转化成一个高效率的实现。 图6 SOPC设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论