N维球体的体积公式_第1页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

n维球体的体积递推公式若用Vn表示n维半径为1的球体的体积,则n+1维半径为1的球体的体积为?Vn?1?2?20Vncosn?dsin? (1)本文简要地推导此递推公式。换言之,简要说明积分项为何为Vncosn?dsin?。首先看一维情形。当n?1时,球体的体积显然为其半径的两倍。换言之,此时Vn?2。再来看二维情形。二维球体(即我们通常所说的圆)可以认为是这样从一维球体拓展而成的:过一维球体的球心作一维球体的垂线。沿此垂线慢慢向上平移一维球体,在移动的过程中同时慢慢地收缩一维球体,以保证一维球体的边界点到球心的距离不变(即使之始终等于1)。显然,向上移到某一位置(也即移动一个单位长的距离)后,一维球体的两边界点合二为一。(若边界点继续向上移动,那将导致边界点到球心的距离就会大于1了。)如此这样也就得到了半个二维球体,即通常所说的一个半圆。若如此这般从初始位置向下移到一维球体,即可得另外半个二维球体。这样二维球体的体积(也即我们常说的面积)也就等于初始的一维球体如此向上移动过程中所扫过的体积的两倍,或者说是如此累积起来的所有的一维球体的“总体积”的两倍。若用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论