




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
导数与单调性函数的单调性在某个区间(a,b)内,如果f(x)0,那么函数yf(x)在这个区间内单调递增;如果f(x)0,解集在定义域内的部分为单调递增区间;解不等式f(x)0).则f(x).令f(x)0,解得x1或x5.但1(0,),舍去.当x(0,5)时,f(x)0.f(x)的增区间为(5,),减区间为(0,5).高频考点二含参数的函数的单调性例2、设函数f(x)aln x,其中a为常数.(1)若a0,求曲线yf(x)在点(1,f(1)处的切线方程;(2)讨论函数f(x)的单调性.解(1)由题意知a0时,f(x),x(0,).此时f(x).可得f(1),又f(1)0,所以曲线yf(x)在(1,f(1)处的切线方程为x2y10.(2)函数f(x)的定义域为(0,).f(x).当a0时,f(x)0,函数f(x)在(0,)上单调递增.当a0时,令g(x)ax2(2a2)xa,由于(2a2)24a24(2a1).当a时,0,f(x)0,函数f(x)在(0,)上单调递减.当a时,0,g(x)0,f(x)0,函数f(x)在(0,)上单调递减.当a0时,0.设x1,x2(x1x2)是函数g(x)的两个零点,则x1,x2.由x10,所以x(0,x1)时,g(x)0,f(x)0,函数f(x)单调递减;x(x1,x2)时,g(x)0,f(x)0,函数f(x)单调递增;x(x2,)时,g(x)0,f(x)0,函数f(x)单调递减.【方法规律】利用导数研究函数的单调性的关键在于准确判定导数的符号,当f(x)含参数时,需依据参数取值对不等式解集的影响进行分类讨论.分类讨论时,要做到不重不漏.【变式探究】 设函数f(x)ax2aln x,g(x),其中aR,e2.718为自然对数的底数.(1)讨论f(x)的单调性;(2)证明:当x1时,g(x)0.(1)解由题意得f(x)2ax(x0).当a0时,f(x)0时,由f(x)0有x,当x时,f(x)0,f(x)单调递增.(2)证明令s(x)ex1x,则s(x)ex11.当x1时,s(x)0,所以ex1x,从而g(x)0.高频考点三利用函数单调性求参数例3、已知函数f(x)ln x,g(x)ax22x(a0).(1)若函数h(x)f(x)g(x)存在单调递减区间,求实数a的取值范围;(2)若函数h(x)f(x)g(x)在1,4上单调递减,求实数a的取值范围.解(1)h(x)ln xax22x,x(0,),所以h(x)ax2,由h(x)在(0,)上存在单调递减区间,所以当x(0,)时,ax2有解.设G(x),所以只要aG(x)min即可.而G(x)1,所以G(x)min1.所以a1.(2)由h(x)在1,4上单调递减得,当x1,4时,h(x)ax20恒成立,即a恒成立.设G(x),所以aG(x)max,而G(x)1,因为x1,4,所以,所以G(x)max(此时x4),所以a.【方法规律】利用单调性求参数的两类热点问题的处理方法(1)函数f(x)在区间D上存在递增(减)区间.方法一:转化为“f(x)0(0(0)成立”.(2)函数f(x)在区间D上递增(减).方法一:转化为“f(x)0(0)在区间D上恒成立”问题;方法二:转化为“区间D是函数f(x)的单调递增(减)区间的子集”.【易错警示】对于:处理函数单调性问题时,应先求函数的定义域;对于:h(x)在(0,)上存在递减区间,应等价于h(x)0在(0,)上有解,易误认为“等价于h(x)0在(0,)上有解”,多带一个“”之所以不正确,是因为“h(x)0在(0,)上有解即为h(x)0在(0,)上有解,或h(x)0在(0,)上有解”,后者显然不正确;对于:h(x)在1,4上单调递减,应等价于h(x)0在1,4上恒成立,易误认为“等价于h(x)0时恒成立即alnx0,在x0时恒成立所以alnx,在x0时恒成立令g(x)lnx(x0),则g(x)(x0),由g(x)0,得x1;由g(x)0,得0x0时恒成立,即alnx0,在x0时恒成立,所以alnx,在x0时恒成立,由上述推理可知此时a1.故实数a的取值范围是(,1高考真题:1.【2016高考山东理数】已知.讨论的单调性;【解析】()的定义域为;.当, 时,单调递增;,单调递减.当时,.(1),当或时,单调递增;当时,单调递减;(2)时,在内,单调递增;(3)时,当或时,单调递增;当时,单调递减.综上所述,当时,函数在内单调递增,在内单调递减;当时,在内单调递增,在内单调递减,在 内单调递增;当时,在内单调递增;当,在内单调递增,在内单调递减,在内单调递增.2.(2016全国卷)若函数f(x)xsin 2xasin x在(,)上单调递增,则a的取值范围是()A.1,1 B. C. D.解析f(x)xsin 2xasin x,f(x)1cos 2xacos xcos2xacos x.由f(x)在R上单调递增,则f(x)0在R上恒成立.令tcos x,t1,1,则t2at0,在t1,1上恒成立.4t23at50在t1,1上恒成立.令g(t)4t23at5,则解之得a.答案C3.(2013全国卷) 若函数f(x)x2ax在是增函数,则a的取值范围是()A1,0 B1,)C0,3 D3,)【答案】D【解析】 f(x)2xa0在上恒成立,即a2x在上恒成立,由于y2x在上单调递减,所以y0得x,令f(x)0得0x0.答案C3.已知函数f(x)x3ax4,则“a0”是“f(x)在R上单调递增”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件解析f(x)x2a,当a0时,f(x)0恒成立,故“a0”是“f(x)在R上单调递增”的充分不必要条件.答案A4.已知函数yf(x)的图象是下列四个图象之一,且其导函数yf(x)的图象如图所示,则该函数的图象是()解析由yf(x)的图象知,yf(x)在1,1上为增函数,且在区间(1,0)上增长速度越来越快,而在区间
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年厨房设备进出口贸易代理协议
- 二零二五年度文化娱乐项目开发合同摘要
- 2025版摩托车售后服务网点加盟协议
- 二零二五年度教育行业贷款购销合同
- 二零二五版智能硬件研发联合出资合作协议
- 2025版便利店连锁加盟品牌推广合作合同
- 二零二五年度房屋买卖合同样本及房地产交易税费减免协议
- 二零二五年度抵押资产购销法律咨询及服务合同
- 2025版股权质押借款跨境投资合作合同
- 2025车库租赁合同范本汇编:车位租赁合同签订指南
- 应急通信网络建设方案
- 八段锦考试题及答案
- DB11-T 806-2022 地面辐射供暖技术规范
- 纯英文初三数学试卷
- 压缩空气流量及管径计算
- 起重吊装作业安全培训题库
- 乐嘉性格色彩培训
- 铝合金技术服务协议
- 员工出差安全培训
- 手术室批量伤员应急预案
- 财险公司新人培训
评论
0/150
提交评论