高中数学函数解题思路多元化方式_第1页
高中数学函数解题思路多元化方式_第2页
高中数学函数解题思路多元化方式_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1/3高中数学函数解题思路多元化方式高中数学函数解题思路多元化方式一、函数解题思路的现状和重要性正确把握高中函数的解题思路,可以有效地锻炼学生的数学思维方法。高中是学生思维能力培养的重要阶段,函数解题过程,正是学生发散思维、创新思维的过程,能够提高学生独立思考的能力。想要提高解答函数问题的能力,解题思路的训练是重要的,在解题中要多思考为什么会想到这个解题办法。通过把握函数的解题思路,能够提高学生的数学应用能力。函数中最重要的学习方法是数形结合,通过数形结合,培养学生的观察意识以及转化的思想,通过联系学过的知识,融会贯通,提高学生解决问题的能力。二、函数解题思路多元化的方式1培养学生的发散思维发散思维又称扩散思维和求异思维,培养学生的发散思维就是鼓励学生从不同的角度思考问题,用不同的方法和途径解决问题,追求多样化的解题方法和多元化的解题思路。在解决高中数学函数的问题时,要能够触类旁通,能够举一反三。在高中函数解题思路中,能够从不同的角度思考问题,就体现了学生的发散思维。2/3例如,求FX21X的值域。学生经过思考,可以用不同的方法进行解题。第一种是配方,消除未知数,第二种是通过拆解变形,进行解题。具体过程如下第一,FX1XX1X22,当X1X,F的最小值是2,所以值域是2,)。第二,FX1X21X22X1X2,因此值域是2,)。2培养学生的创新思维培养学生的创新思维,能够促进学生函数解题思路的多元化。培养学生的创新思维,就是要发现别人没有发现的问题,思考别人没有想到的问题,要充分展开联想,有逆向思维的能力以及直觉思维的能力。直觉思维的能力主要借助想象,根据函数题目中的条件能够依靠直觉发现其中的内在联系,综合思考,寻找隐藏的条件,进行合理的判断。逆向思维也是创新思维的一种方式,通过思维角度的逆向转换,对函数问题进行思考,改变问题的结构,增加解题的思路,最终解决函数问题。例如,已知数列AN满足ANNN2,NN,比较AN与AN1的大小关系。第一,利用单调性判断,ANNN2N22N212N2,数列具有递增性,所以AN1AN。第二,可以将ANNN2看做浓度,利用浓度法解决,3/3N增大代表溶液中溶质增加,因此浓度增加,所以AN1AN。第三,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论