已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ELEVATORPLANNINGWITHSTOCHASTICMULTICRITERIAACCEPTABILITYANALYSISABSTRACTMODERNELEVATORSYSTEMSINHIGHRISEBUILDINGSCONSISTOFGROUPSOFELEVATORSWITHCENTRALIZEDCONTROLTHEGOALINELEVATORPLANNINGISTOCONFIGUREASUITABLEELEVATORGROUPTOBEBUILTTHEELEVATORGROUPMUSTSATISFYSPECIFICMINIMUMREQUIREMENTSFORANUMBEROFSTANDARDPERFORMANCECRITERIAINADDITION,ITISDESIRABLETOOPTIMIZETHECONFIGURATIONINTERMSOFOTHERCRITERIARELATEDTOTHEPERFORMANCE,ECONOMYANDSERVICELEVELOFTHEELEVATORGROUPDIFFERENTSTAKEHOLDERSINVOLVEDINTHEPLANNINGPHASEEMPHASIZEDIFFERENTCRITERIAMOSTOFTHECRITERIAMEASUREMENTSAREBYNATUREUNCERTAINSOMECRITERIACANBEESTIMATEDBYUSINGANALYTICALMODELS,WHILEOTHERS,ESPECIALLYTHOSERELATEDTOTHESERVICELEVELINDIFFERENTTRAFFICPATTERNS,REQUIRESIMULATIONSINTHISPAPERWEFORMULATETHEELEVATORPLANNINGPROBLEMASASTOCHASTICDISCRETEMULTICRITERIADECISIONMAKINGPROBLEMWECOMPARE10FEASIBLEELEVATORGROUPCONFIGURATIONSFORA20FLOORBUILDINGWEEVALUATETHECRITERIARELATEDTOTHESERVICELEVELINDIFFERENTTRAFFICSITUATIONSUSINGTHEKONEBUILDINGTRAFFICSIMULATOR,ANDUSEANALYTICALMODELSANDEXPERTJUDGMENTSFOROTHERCRITERIATHERESULTINGDECISIONPROBLEMCONTAINSMIXEDTYPECRITERIASOMECRITERIAAREREPRESENTEDBYTHEMULTIVARIATEGAUSSIANDISTRIBUTION,OTHERSBYDETERMINISTICVALUESANDORDINALRANKINGINFORMATIONTOIDENTIFYCONFIGURATIONSTHATCANBESTSATISFYTHEGOALSOFTHESTAKEHOLDERS,WEANALYZETHEPROBLEMUSINGTHESTOCHASTICMULTICRITERIAACCEPTABILITYANALYSISSMAAMETHODKEYWORDSSTOCHASTICMULTICRITERIAACCEPTABILITYANALYSISSMAAELEVATORPLANNINGMULTICRITERIASIMULATIONARTICLEOUTLINE1INTRODUCTION2ELEVATORPLANNING3THESMAAMETHODS4SIMULATIONMODELANDSIMULATIONRESULTS5DECISIONMAKINGPROBLEMANDSMAAANALYSIS6CONCLUSIONSACKNOWLEDGEMENTS1INTRODUCTIONINMODERNHIGHRISEBUILDINGSWORKERSANDINHABITANTSARETRANSPORTEDBETWEENFLOORSMAINLYBYMEANSOFMULTIPLEELEVATORSELEVATORSAREUSUALLYOPERATEDBYELEVATORGROUPCONTROLSYSTEMSINORDERTOPROVIDEEFFICIENTTRANSPORTATIONWHENAHIGHRISEBUILDINGISDESIGNED,ASUITABLECONFIGURATIONFORTHEELEVATORGROUPHASTOBEDESIGNEDTHEDECISIONMAKERSDMSSHOULDCONSIDERPERFORMANCEASWELLASPRICEANDOTHERNONPERFORMANCECRITERIAOFALTERNATIVEELEVATORGROUPCONFIGURATIONSBECAUSEANALYTICALMETHODSARELIMITEDTOTHEUPPEAKTRAFFICSITUATIONANDCANNOTEVALUATETHEEFFECTOFAGROUPCONTROLALGORITHM,THEPERFORMANCEHASTOBEMEASUREDUSINGCOMPUTERSIMULATION,WHICHPRODUCESSTOCHASTICMEASUREMENTSFORTHEPERFORMANCECRITERIAOFALTERNATIVECONFIGURATIONSTHEPERFORMANCEOFANELEVATORGROUPCANBEMEASUREDUSINGSEVERALCRITERIA,SUCHASTHEAVERAGEWAITINGTIMEWTORTHEAVERAGERIDETIMEOFTHEPASSENGERSTHEPRICEANDOTHERNONPERFORMANCECRITERIACANUSUALLYBEASSESSEDWITHSUFFICIENTACCURACYORBYRANKINGTHEALTERNATIVESDIFFERENTDMSMAYHAVEDIFFERENTPREFERENCESFORTHECRITERIAFOREXAMPLE,SOMEDMSPAYATTENTIONTOTHEAVERAGEWTWHILEOTHERSTHINKTHATTHEPERCENTAGEOFLONGWTSISMOREIMPORTANTSINCEITREPRESENTSTHEFAIRNESSINSERVICETHEBUILDERMAYSTRESSTHEAMOUNTOFFLOORSPACEUSEDBYTHEELEVATORSYSTEMTHEREAREUSUALLYSOMETRADEOFFSANDDEPENDENCIESBETWEENCRITERIATHEPROBLEMOFELEVATORPLANNINGCANTHUSBECONSIDEREDASADISCRETEMULTICRITERIADECISIONMAKINGPROBLEMWITHMULTIPLEDMSANDSTOCHASTICCRITERIAMEASUREMENTSWEAREINTERESTEDINFINDINGACOMPROMISESOLUTIONWHICHTAKESINTOACCOUNTDIFFERENTPOSSIBLEPREFERENCESOFDMS,ANDTHUSWEHAVECHOSENTOANALYZETHEPROBLEMUSINGTHESMAAMETHODSMAAMETHODSHAVEBEENDEVELOPEDFORDISCRETEMULTICRITERIADECISIONMAKINGPROBLEMS,WHERECRITERIAMEASUREMENTSAREUNCERTAINORINACCURATEANDWHEREITISFORSOMEREASONDIFFICULTTOOBTAINACCURATEORANYPREFERENCEINFORMATIONFROMTHEDMS1USUALLYTHEPREFERENCEINFORMATIONISMODELLEDBYDETERMININGIMPORTANCEWEIGHTSFORCRITERIATHESMAAMETHODSAREBASEDONEXPLORINGTHEWEIGHTSPACEINORDERTODESCRIBETHEPREFERENCESTHATWOULDMAKEEACHALTERNATIVETHEMOSTPREFERREDONE,ORTHATWOULDGIVEACERTAINRANKFORASPECIFICALTERNATIVEINTHEORIGINALSMAAMETHOD2THEWEIGHTSPACEANALYSISISPERFORMEDBASEDONANADDITIVEUTILITYORVALUEFUNCTIONANDSTOCHASTICCRITERIAMEASUREMENTSTHESMAA2METHOD1GENERALIZEDTHEANALYSISTOAGENERALUTILITYORVALUEFUNCTION,TOINCLUDEVARIOUSKINDSOFPREFERENCEINFORMATIONANDTOCONSIDERHOLISTICALLYALLRANKSTHESMAAOMETHOD3EXTENDSSMAA2FORTREATINGMIXEDORDINALANDCARDINALCRITERIAINACOMPARABLEMANNERSMAAISSUITABLEFORSOLVINGPROBLEMSALSOWHENTHEUNCERTAINTIESOFCRITERIAMEASUREMENTSAREDEPENDENT4ELEVATORPLANNINGRESEARCHHASALONGHISTORYTHEOPERATIVEPERFORMANCEHASBEENSTUDIEDOVERDECADES5AND6THEUPPEAKINTERVALANDTHEUPPEAKHANDLINGCAPACITYHASBEENANALYZEDINMANYPUBLICATIONSINTHE1960S,SEE,EG7,8AND9THEPATIENCEOFPASSENGERSANDWHATSHOULDBECONSIDEREDGOODSERVICEINDIFFERENTTYPESOFBUILDINGSHASBEENSTUDIEDSINCE1940SACCORDINGTO10EARLIESTAPPLICATIONSOFSIMULATIONTOELEVATORPLANNINGAREFROMTHE1960S11AND12THEREAREALSOMORERECENTAPPLICATIONSINALLAREASOFELEVATORPLANNING,BUTINPRACTICENORMALELEVATORGROUPSARESTILLDESIGNEDUSINGMETHODSFROMTHE1960SINTHISPAPERWEPRESENTAMULTICRITERIAMETHODTHATALLOWSTOUSESTOCHASTICSIMULATOROUTPUTINTHEDECISIONANALYSISWECONSIDERAREALISTICELEVATORPLANNINGPROBLEM,WHICHCONSISTSOFA20FLOORBUILDINGFORWHICHONEOF10POSSIBLEELEVATORGROUPCONFIGURATIONSHASTOBECHOSENWEWILLANALYZETHEALTERNATIVECONFIGURATIONSUSINGTHEKONEBUILDINGTRAFFICSIMULATORBASEDONTHEOUTPUTOFTHESIMULATOR,WEFORMAMULTICRITERIADECISIONMAKINGPROBLEM,WHICHWEANALYZEUSINGSMAATOOURBESTKNOWLEDGE,WEARETHEFIRSTTOAPPLYASTOCHASTICMCDAMETHODINELEVATORPLANNINGWEHAVECHOSENTOUSESMAAINTHEDECISIONANALYSIS,BECAUSEITISTHEONLYMCDAMETHODOLOGYTHATALLOWSMULTIVARIATEGAUSSIANDISTRIBUTEDCRITERIAMEASUREMENTSTHISPAPERISORGANIZEDASFOLLOWSSECTION2INTRODUCESTHEREADERTOTHEAREAOFELEVATORPLANNING,ANDSECTION3TOSMAAMETHODSINSECTION4,WEPRESENTTHESIMULATORTHATISUSEDTOGENERATETHEDATA,ANDTHESIMULATIONRESULTSWEDEFINETHEDECISIONMAKINGPROBLEMANDPRESENTTHESMAAANALYSISINSECTION5SECTION6ENDSTHISPAPERWITHCONCLUSIONS2ELEVATORPLANNINGTHEGOALINELEVATORPLANNINGISTOFINDASUITABLEELEVATORGROUPTOSERVETHETRAFFICOFAHIGHRISEBUILDINGBECAUSETHEBUILDINGSDONOTEXISTATTHEPLANNINGSTAGE,THETRAFFICMUSTBEESTIMATEDBYUSINGTHEBUILDINGSPECIFICATIONSTHENUMBEROFFLOORS,THEIRHEIGHTS,THEFLOORAREAANDTHEBUILDINGTYPETHETRAVELHEIGHTCANBECALCULATEDFROMTHENUMBEROFFLOORSANDTHEIRHEIGHTS,ANDTHETOTALPOPULATIONCANBEESTIMATEDACCORDINGTOTHETYPEOFBUILDINGANDTHEFLOORAREABUILDINGTYPESHAVECHARACTERISTICTRAFFICPROFILESFOREXAMPLE,OFFICEBUILDINGSTYPICALLYHAVEUPPEAKTRAFFICINTHEMORNINGWHENEMPLOYEESENTERTHEBUILDING,INTENSETWOWAYORINTERFLOORTRAFFICDURINGTHELUNCHTIME,ANDDOWNPEAKTRAFFICWHENEMPLOYEESEXITTHEBUILDING13THEPERFORMANCEOFAGROUPOFELEVATORSISMAINLYDETERMINEDBYTHENUMBERANDSIZEOFTHECARSANDTHEIRSPEEDALSOACCELERATION,DOORTYPESANDTHEGROUPCONTROLALGORITHMAFFECTPERFORMANCEUSUALPERFORMANCECRITERIAARETHEHANDLINGCAPACITYANDTHEINTERVALCALCULATEDINTHEUPPEAKSITUATIONTHEUPPEAKHANDLINGCAPACITYISTHEPERCENTAGEOFPOPULATIONPER5MINTHATCANBETRANSPORTEDFROMTHELOBBYTOTHEUPPERFLOORSITISASSUMEDTHATELEVATORSAREFILLEDTO80OFRATEDLOADALTHOUGHITISPOSSIBLETOFILLELEVATORUPTORATEDLOADTHATDOESNOTHAPPENINPRACTICETHEUPPEAKINTERVALISANINTERVALBETWEENTWOSTARTSFROMTHELOBBYTHEINTERVALISALSORELATEDTOTHEWTTHEUPPEAKISUSEDSINCEITISTHEMOSTDEMANDINGSITUATIONCONSIDERINGELEVATORHANDLINGCAPACITYATLEASTINOFFICEBUILDINGS,ANDBECAUSETHEREAREANALYTICALFORMULASFORCALCULATINGTHEUPPEAKHANDINGCAPACITYANDINTERVAL14THEUSUALRECOMMENDATIONSSTATETHATTHEUPPEAKHANDLINGCAPACITYFORANOFFICEBUILDINGSHOULDBE1117ANDINTERVAL2030S15NONPERFORMANCECRITERIA,SUCHASCOSTANDOCCUPIEDFLOORAREASHOULDALSOBECONSIDEREDTHECOSTOFANELEVATORSYSTEMCONSISTSOFBUILDANDMAINTENANCECOSTSTHEFLOORAREAOCCUPIEDBYTHEELEVATORGROUPCONSISTSOFTHESHAFTSPACEANDTHEWAITINGAREAFORPASSENGERSINHIGHRISEBUILDINGSTHEPOPULATIONISLARGEANDDISTANCESARELONG,THUSTHEPORTIONOFSHAFTSISLARGECOMPAREDTOTHETOTALFLOORAREATHISMEANSMORECOSTS,SINCETHERENTABLEAREAISREDUCEDINSOMECASESTHEBUILDINGDESIGNCONSTRAINSTHEOCCUPIEDAREA,SOMETIMESTHEREISMOREFREEDOMTOUSESPACETHEELEVATORPLANNINGISNOTINDEPENDENTOFBUILDINGDESIGNTHEARCHITECTSHOULDTAKEADVICEFROMTHEELEVATORPLANNERINSTEADOFCONSIDERINGONLYUPPEAKTRAFFIC,WETAKEINTOACCOUNTTHEENTIREDAILYTRAFFICANDCONSIDERALLCRITERIASIMULTANEOUSLYINTHESTUDYPRESENTEDINTHISPAPERWECONSIDERTHEFOLLOWINGSIXCRITERIATHECOSTANDAREACRITERIATAKEINTOACCOUNTTHEBUILDINGOWNERSPOINTOFVIEWPASSENGERSPOINTOFVIEWISTAKENINTOACCOUNTBYWT,JOURNEYTIMEJT,THEPERCENTAGEOFWTSEXCEEDING60SWT60,ANDTHEPERCENTAGEOFJTSEXCEEDING120SJT120THEWTISMEASUREDFROMTHEMOMENTAPASSENGERENTERSTHEWAITINGAREATOTHEMOMENTHE/SHEENTERSTHEELEVATORTHEJTISTHETOTALTIMEFROMENTERINGTHEWAITINGAREATOEXITINGTHEELEVATORTHELASTTWOCRITERIAMEASUREUNSATISFACTORYSERVICE,WHICHMAYHAPPENESPECIALLYININTENSETRAFFICPEAKS3THESMAAMETHODSTHESMAA2METHOD1HASBEENDEVELOPEDFORDISCRETESTOCHASTICMULTICRITERIADECISIONMAKINGPROBLEMSWITHMULTIPLEDMSSMAA2APPLIESINVERSEWEIGHTSPACEANALYSISTODESCRIBEFOREACHALTERNATIVEWHATKINDOFPREFERENCESMAKEITTHEMOSTPREFERREDONE,ORPLACEITONANYPARTICULARRANKTHEDECISIONPROBLEMISREPRESENTEDASASETOFMALTERNATIVESX1,X2,XMTHATAREEVALUATEDINTERMSOFNCRITERIATHEDMSPREFERENCESTRUCTUREISREPRESENTEDBYAREALVALUEDUTILITYORVALUEFUNCTIONUXI,WTHEVALUEFUNCTIONMAPSTHEDIFFERENTALTERNATIVESTOREALVALUESBYUSINGAWEIGHTVECTORWTOQUANTIFYDMSSUBJECTIVEPREFERENCESSMAA2HASBEENDEVELOPEDFORSITUATIONSWHERENEITHERCRITERIAMEASUREMENTSNORWEIGHTSAREPRECISELYKNOWNUNCERTAINORIMPRECISECRITERIAAREREPRESENTEDBYSTOCHASTICVARIABLESIJWITHJOINTDENSITYFUNCTIONFXINTHESPACEXRMNWEDENOTETHESTOCHASTICCRITERIAMEASUREMENTSOFALTERNATIVEXIWITHITHEDMSUNKNOWNORPARTIALLYKNOWNPREFERENCESAREREPRESENTEDBYAWEIGHTDISTRIBUTIONWITHJOINTDENSITYFUNCTIONFWWINTHEFEASIBLEWEIGHTSPACEWTOTALLACKOFPREFERENCEINFORMATIONISREPRESENTEDINBAYESIANSPIRITBYAUNIFORMWEIGHTDISTRIBUTIONINW,THATIS,FWW1/VOLWTHEWEIGHTSPACECANBEDEFINEDACCORDINGTONEEDS,BUTTYPICALLY,THEWEIGHTSARENONNEGATIVEANDNORMALIZED,THATISTHEWEIGHTSPACEISANN1DIMENSIONALSIMPLEXINNDIMENSIONALSPACE1THEVALUEFUNCTIONISUSEDTOMAPTHESTOCHASTICCRITERIAANDWEIGHTDISTRIBUTIONSINTOVALUEDISTRIBUTIONSUI,WBASEDONTHEVALUEDISTRIBUTIONS,THERANKOFEACHALTERNATIVEISDEFINEDASANINTEGERFROMTHEBESTRANK1TOTHEWORSTRANKMBYMEANSOFARANKINGFUNCTION2WHERETRUE1ANDFALSE0SMAA2ISTHENBASEDONANALYZINGTHESTOCHASTICSETSOFFAVORABLERANKWEIGHTS3ANYWEIGHTRESULTSINSUCHVALUESFORDIFFERENTALTERNATIVES,THATALTERNATIVEXIOBTAINSRANKRTHEFIRSTDESCRIPTIVEMEASUREOFSMAA2ISTHERANKACCEPTABILITYINDEX,WHICHMEASURESTHEVARIETYOFDIFFERENTPREFERENCESTHATGRANTALTERNATIVEXIRANKRITISTHESHAREOFALLFEASIBLEWEIGHTSTHATMAKETHEALTERNATIVEACCEPTABLEFORAPARTICULARRANK,ANDITISMOSTCONVENIENTLYEXPRESSEDPERCENTAGEWISETHERANKACCEPTABILITYINDEXISCOMPUTEDNUMERICALLYASAMULTIDIMENSIONALINTEGRALOVERTHECRITERIADISTRIBUTIONSANDTHEFAVORABLERANKWEIGHTSAS4THEMOSTACCEPTABLEBESTALTERNATIVESARETHOSEWITHHIGHACCEPTABILITIESFORTHEBESTRANKSTHECENTRALWEIGHTVECTORISTHEEXPECTEDCENTEROFGRAVITYCENTROIDOFTHEFAVORABLEFIRSTRANKWEIGHTSOFANALTERNATIVETHECENTRALWEIGHTVECTORREPRESENTSTHEPREFERENCESOFATYPICALDMSUPPORTINGTHISALTERNATIVETHECENTRALWEIGHTSOFDIFFERENTALTERNATIVESCANBEPRESENTEDTOTHEDMSINORDERTOHELPTHEMUNDERSTANDHOWDIFFERENTWEIGHTSCORRESPONDTODIFFERENTCHOICESWITHTHEASSUMEDPREFERENCEMODELTHECENTRALWEIGHTVECTORISCOMPUTEDNUMERICALLYASAMULTIDIMENSIONALINTEGRALOVERTHECRITERIADISTRIBUTIONSANDTHEFAVORABLEFIRSTRANKWEIGHTSUSING5THECONFIDENCEFACTORISTHEPROBABILITYFORANALTERNATIVETOOBTAINTHEFIRSTRANKWHENTHECENTRALWEIGHTVECTORISCHOSENTHECONFIDENCEFACTORISCOMPUTEDASAMULTIDIMENSIONALINTEGRALOVERTHECRITERIADISTRIBUTIONSUSING6CONFIDENCEFACTORSCANSIMILARLYBECALCULATEDFORANYGIVENWEIGHTVECTORSTHECONFIDENCEFACTORSMEASUREWHETHERTHECRITERIAMEASUREMENTSAREACCURATEENOUGHTODISCERNTHEEFFICIENTALTERNATIVESTHEUNCERTAINTYOFTHECRITERIAMEASUREMENTSCANBEMODELLEDVERYFLEXIBLYINSMAAMETHODSBYUSINGANAPPROPRIATEJOINTDISTRIBUTIONFXIFTHEUNCERTAINTIESAREINDEPENDENT,THENSEPARATEDISTRIBUTIONSFIJIJCANBEUSEDFOREACHMEASUREMENTSIMPLEPARAMETRICDISTRIBUTIONS,SUCHASTHEUNIFORMANDNORMALDISTRIBUTIONMAYBESUITABLEINMANYAPPLICATIONSWHENTHEUNCERTAINTIESOFTHECRITERIAMEASUREMENTSAREDEPENDENT,THENTHEDEPENDENTPARAMETERSCANBEREPRESENTEDBYAJOINTDISTRIBUTIONTHEMULTIVARIATEGAUSSIANNORMALDISTRIBUTIONISPARTICULARLYSUITABLE,BECAUSEITISTHEORETICALLYWELLUNDERSTOODANDYETITAPPROXIMATESWELLMANYREALLIFEPHENOMENAUSEOFTHEMULTIVARIATEGAUSSIANDISTRIBUTIONWITHSMAAISDESCRIBEDINMOREDETAILIN4THEREARESEVERALDIFFERENTWAYSTOHANDLEPARTIALPREFERENCEINFORMATIONINSMAAMETHODS1INTHEDECISIONMAKINGPROBLEMCONSIDEREDINTHISPAPER,WEAPPLYINTERVALCONSTRAINTSFORWEIGHTSFORMOREINFORMATIONABOUTTHISTECHNIQUE,SEE164SIMULATIONMODELANDSIMULATIONRESULTSTOOBTAINSTOCHASTICCRITERIAMEASUREMENTSFORTHEPERFORMANCECRITERIA,WEEXECUTEDSIMULATIONSWITHTHEKONEBUILDINGTRAFFICSIMULATOR17AND18THESIMULATIONMODELCONSISTSOFTHEELEVATORMODELANDTRAFFICGENERATIONFEATURESOFTHEMODELAREFLOORSHAVELANDINGCALLBUTTONSENTERINGPASSENGERGIVESACALLTOTHEUP/DOWNDIRECTIONWHEREHEISHEADINGTHEGROUPCONTROLALGORITHMALLOCATESTHECALLTOTHEMOSTSUITABLEELEVATORTHEALGORITHMISAGENETICALGORITHM19,WHICHOPTIMIZESWTSTHEGROUPCONTROLHASALSOARETURNINGALGORITHMWHICHSENDSTHEELEVATORBACKTOTHELOBBYTOWAITFORACALLTHERETURNINGALGORITHMISNECESSARYINTHEINCOMINGTRAFFICSITUATIONASTOPPINGELEVATOROPENSDOORS,EXITINGPASSENGERSGETOUT,ENTERINGPASSENGERSGETINANDTHEDOORSARECLOSEDTHESIMULATORHASDELAYSRELATEDTODOOROPENING,ENTRANCE,EXITANDDOORCLOSINGANELEVATORCANTAKEPASSENGERSUPTOTHEMAXIMUMLOAD,WHICHISABOUT80OFTHECARSRATEDLOADIFTHELOADEXCEEDSBYPASSLOADABOUT80OFMAXIMUMLOAD,ANELEVATORDOESNOTACCEPTNEWLANDINGCALLSTHELOADSAREEXPRESSEDINPERSONSANELEVATORCANNOTREVERSEDIRECTIONWITHPASSENGERSABOARDANELEVATORACCELERATESSMOOTHLYTOTHERATEDSPEED,PROVIDEDTHATTHEDISTANCEISLONGENOUGHTHESMOOTHNESSISMODELLEDBYTHEACCELERATIONDERIVATIVEJERK,WHICHISTHEDECELERATIONISANINVERSETOTHEACCELERATIONPHASETHEPASSENGERSARRIVETODIFFERENTFLOORSAPPROXIMATELYACCORDINGTOAPOISSONPROCESSTHISMEANSTHATTHEINTERARRIVALTIMESFOLLOWTHEEXPONENTIALDISTRIBUTION,FXEX,WHEREISTHEARRIVALRATETHEREISONEENTRANCEFLOORANDRESTOFTHEFLOORSAREPOPULATEDFLOORSTRAFFICCONSISTSOFTHREECOMPONENTSINCOMING,OUTGOINGANDINTERFLOORCOMPONENTSINCOMINGPASSENGERSTRAVELFROMANENTRANCEFLOORTOPOPULATEDFLOORS,OUTGOINGPASSENGERSFROMPOPULATEDFLOORSTOTHEENTRANCEFLOORANDINTERFLOORPASSENGERSBETWEENPOPULATEDFLOORSINTENSITYOFTRAFFICANDTHEPERCENTAGESOFINCOMING,OUTGOINGANDINTERFLOORPASSENGERSAREDETERMINEDBYTRAFFICPARAMETERSTHETRAFFICPROFILEDETERMINESTHEINTENSITYANDTHEPORTIONSOFTRAFFICCOMPONENTSATEACHMOMENTTHEINTENSITYISEXPRESSEDASPORTIONOFPOPULATIONPERTIMEUNITTHEPASSENGERSAREGENERATEDASFOLLOWS1THESIMULATORGENERATESTHEEXPECTEDNUMBEROFPASSENGERSTOA5MINPERIODANDASSIGNSTHEMRANDOMENTRYTIMESTHENUMBEROFPASSENGERSISTHETOTALPOPULATIONMULTIPLIEDBYTHETRAFFICINTENSITY2THETRAFFICCOMPONENTOFPASSENGERINCOMING,OUTGOINGORINTERFLOORISCHOSENRANDOMLYACCORDINGTOTHETRAFFICPROFILE3THECOMPONENTDETERMINESWHETHERTHEARRIVALANDDESTINATIONFLOORSAREENTRANCEORPOPULATEDFLOORSAIFTHEFLOORISAPOPULATEDFLOOR,THEPROBABILITYOFTHEFLOORISPROPORTIONALTOTHEFLOORPOPULATIONBIFINDEPENDENTLYGENERATEDARRIVALANDDESTINATIONFLOORSHAPPENTOBEEQUALCANHAPPENWITHANINTERFLOORPASSENGER,THEFLOORGENERATIONISREPEATEDTABLE1SHOWSCHARACTERISTICSOFTHESIMULATEDBUILDINGTHEBUILDINGHASALOBBYFLOORAND19POPULATEDFLOORSTHEESTIMATEDNUMBEROFPEOPLEIS60PERFLOORTABLE1CHARACTERISTICSOFTHESIMULATEDBUILDINGCHARACTERISTICVALUEFLOORS20FLOORHEIGHTM42TRAVELM78FLOORAREAM2/FLOOR1000RENTABLEAREAM2/FLOOR800PERSONSPERFLOOR60PERSONSTOTAL1140FIG1SHOWSTHEINTENSITIESOFINCOMING,OUTGOINGANDINTERFLOORPASSENGERSDURINGTHEDAYFROM7AMTO715PMTHETRAFFICPROFILEISMEASUREDFROMANOFFICEBUILDINGTHEPROFILESHOWSTYPICALMORNING,LUNCHTIMEANDAFTERNOONTRAFFICPEAKSWHENPASSENGERSAREGENERATEDACCORDINGTOTHETRAFFICPROFILE,THEEXPECTEDNUMBEROFPASSENGERSARE11502SINCETOTALPOPULATIONOFTHEBUILDINGISUNCERTAIN,THETRAFFICISVARIEDBETWEEN80AND120OFFORECASTEDTRAFFICWITHTHESEPARAMETERS,WEGENERATED21TRAFFICSITUATIONSACCORDINGTOTHETRAFFICPROFILETHESAMEPASSENGERSWEREUSEDFORALL10ALTERNATIVESINORDERTOREDUCETHECOVARIANCEBETWEENTHEMEASUREMENTSOFDIFFERENTALTERNATIVESFIG1TRAFFICPROFILEOFTHESIMULATEDBUILDING13SIIKONENML,LEPPLJELEVATORTRAFFICPATTERNRECOGNITIONINPROCEEDINGSOFTHEFOURTHWORLDCONGRESSOFTHEINTERNATIONALFUZZYSYSTEMSASSOCIATION,BRUSSELS,BELGIUM1991P195813TABLE2SHOWS10ALTERNATIVECONFIGURATIONSTHENUMBEROFELEVATORSVARIESBETWEEN6AND8,RATEDLOADFROM13TO24ANDSPEEDFROM35TO5M/SAREAISTHESHAFTSPACEPLUSWAITINGAREASPACETHEEXACTCOSTSAREUNKNOWNTHECOSTSARERANKEDFROM1TO10,WHERE1ISTHECHEAPESTAND10ISTHEMOSTEXPENSIVEALLALTERNATIVESAREFEASIBLEWITHRESPECTTOUPPEAKHANDLINGCAPACITYANDINTERVALTABLE2ALTERNATIVECONFIGURATIONSOFTHEELEVATORGROUPNAMEELEVATORSRATEDLOADSPEEDM/SACCELERATIONM/S2AREAM2COSTE6L17S461740106981E6L21S462140107742E6L17S561750107143E6L24S462440108724E7L17S3571735088755E7L17S471740108756E7L13S571350107607E7L17S571750108958E8L13S3581335087949E8L17S35817350893510SIMULATIONRESULTSAREPRESENTEDINFIG2,FIG3,FIG4ANDFIG5ASWTS,JTS,PERCENTAGEOFWTEXCEEDING60SANDPERCENTAGEOFJTSEXCEEDING120STHEPASSENGERTRANSFERTIMESARECLOSERTOREALITYTHANTHEVALUESNORMALLYUSEDINELEVATORPLANNINGTHISLOWERSTHEHANDLINGCAPACITYANDLENGTHENSTHEWAITINGANDJTSESPECIALLYWHENTHETRAFFICISINTENSIVETHEHORIZONTALAXISSHOWSTHENUMBEROFGENERATEDPASSENGERSINEACHOFTHE21TRAFFICSITUATIONSTHEFIGURESSEEMQUITESIMILAR,SINCETHEORDEROFALTERNATIVESISAPPROXIMATELYTHESAMEWITHALLCRITERIAANDALLINTENSITIESTHEGROUPSWITHEIGHTELEVATORSAREMOREEFFICIENTTHANTHESMALLERGROUPSFIG2WAITINGTIMESFIG3JOURNEYTIMESFIG4PERCENTAGEOFWAITINGTIMESOVER60SFIG5PERCENTAGEOFJOURNEYTIMESOVER120S5DECISIONMAKINGPROBLEMANDSMAAANALYSISTHEUNCERTAINTIESOFTHEPERFORMANCECRITERIAWEREASSESSEDBASEDONTHESIMULATIONSFOREACHOFTHE10CONFIGURATIONSBASEDONTHESIMULATIONRESULTSWEESTIMATEDTHEPARAMETERSFORAMULTIVARIATEGAUSSIANDISTRIBUTION,IETHEEXPECTEDVALUEOFEACHCRITERIAMEASUREMENTANDTHECOVARIANCEMATRIXFORTHEUNCERTAINTYDEPENDENCIESTHEUNCERTAINTIESOFTHEPERFORMANCECRITERIAWEREQUITEDEPENDENT,WITHMULTIVARIATECORRELATIONSINTHEINTERVAL08,1THECROSSCORRELATIONMATRIXISNOTPRESENTEDHEREBECAUSEOFITSSIZE4040THECOSTWASMODELLEDASANORDINALCRITERIONSEE3,BECAUSEEXACTPRICEINFORMATIONWASNOTAVAILABLETHEREQUIREDFLOORAREAWASMEASUREDONACARDINALSCALEWITHUNCERTAINTYFORALLALTERNATIVESTHEMEASUREMENTSFORCOSTANDAREACRITERIAAREPRESENTEDINTABLE2THECRITERIAMEASUREMENTSFORTHEPERFORMANCECRITERIAAREPRESENTEDINTABLE3TABLE3VALUESFORPERFORMANCECRITERIAOFALTERNATIVESMEANSTDEVALTERNATIVEWTJTWT60JT120E6L17S47152435813100476322959283116829E6L21S44208191210553246317628112964783E6L17S57119462313002504622579553060852E6L24S43917160110487218717277453048755E7L17S353546178492622224123072322
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吸入装置依从性的家庭干预方案
- 后疫情时代医联体应急能力建设方案
- 合并肝肾功能不全患者的用药调整方案
- 合并心功能不全的抗凝方案调整
- 合并呼吸疾病患者麻醉深度管理的优化方案研究进展
- 2025年光伏发电项目合作合同协议
- 2025湖南天门市城市社区党组织书记实行事业岗位管理专项招聘2人备考题库附答案
- 2025年宣城绩溪县数据资源局引进事业单位急需紧缺专业人才10人备考题库附答案
- 双相混合状态的跨学科快速稳定策略
- 双抗个体化治疗中的个体化治疗个体化治疗方案优化
- 2023-2024学年保山市腾冲县数学四年级第一学期期末综合测试试题含答案
- 自考电子商务概论复习资料课件
- 2023春国家开放大学-01880组织行为学-期末考试题带答案
- 徐长青《数与形》
- 10SS705-雨水综合利用课件
- 满堂脚手架计算书
- 基于PSCAD仿真的配电网小电流接地系统建模
- 社区专职工作者考试题库及答案解析
- GB/T 40565.4-2021液压传动连接快换接头第4部分:72 MPa螺纹连接型
- GA 1153-2014手持式居民身份证阅读器
- 人为事故防范培训
评论
0/150
提交评论