




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章三角形的初步认识单元测试题一、单选题(共10题;共30分)1、下面命题正确的是()A、一组对边平行,另一组对边相等的四边形是平行四边形。B、等腰梯形的两个角一定相等。C、对角线互相垂直的四边形是菱形。D、三角形三条边上的中线相交于一点,并且这一点到三个顶点的距离相等2、用直尺和圆规作一个角等于已知角的示意图如下,则说明AOBAOB的根据是()A、SASB、ASAC、AASD、SSS3、等腰三角形一腰上的高与另一腰的夹角为30,则顶角的度数为()A、60B、120C、60或150D、60或1204、如图,四边形ABCD是正方形,延长BC至点E,使CECA,连接AE交CD于点F,则AFC的度数是()A、150B、125C、135D、11255、如图所示,一位同学书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A、SSSB、SASC、AASD、ASA6、以下列各组线段长为边能组成三角形的是()A、1CM,2CM,4CMB、8CM,6CM,4CMC、12CM,5CM,6CMD、2CM,3CM,6CM7、下列命题中,真命题的是()A、如果一个四边形两条对角线相等,那么这个四边形是矩形B、如果一个平行四边形两条对角线相互垂直,那么这个四边形是菱形C、如果一个四边形两条对角线平分所在的角,那么这个四边形是菱形D、如果一个四边形两条对角线相互垂直平分,那么这个四边形是矩形8、下列命题中,真命题的个数是()全等三角形的周长相等全等三角形的对应角相等全等三角形的面积相等面积相等的两个三角形全等A、4B、3C、2D、19、若ABCDEF,ABC的周长为100CM,DE30CM,DF25CM,那么BC长()A、55CMB、45CMC、30CMD、25CM10、在ABC中,B的平分线与C的平分线相交于O,且BOC130,则A()A、50B、60C、80D、100二、填空题(共8题;共24分)11、用直尺和圆规作一个角等于已知角的示意图如图所示,则说明DOCDOC的依据是_12、如图,AD是ABC的边BC上的中线,已知AB5CM,AC3CM,则ABD与ACD的周长之差为_CM13、ABC中,BACACBABC432,且ABCDEF,则DEF_度14、三角形的三条角平分线交于一点,这点到三条边的距离相等;三角形的三条中线交于一点;三角形的三条高线所在的直线交于一点;三角形的三条边的垂直平分线交于一点,这点到三个顶点的距离相等以上说法中正确的是_15、如图,BF、CF是ABC的两个外角的平分线,若A50,则BFC_度16、如图,点D,B,C点在同一条直线上,A60,C50,D25,则1_度17、如图所示,BEAC于点D,且ABCB,BDED,若ABC64,则E_18、如图,在ABC中,将C沿DE折叠,使顶点C落在ABC内C处,若A75,B65,140,则2的度数为_三、解答题(共5题;共36分)19、如图,已知E是AOB的平分线上的一点,ECOA,EDOB,垂足分别是C,D求证OE垂直平分CD20、如图,在ABC中,CDAB,垂足为D,点E在BC上,EFAB,垂足为F12,3105,求ACB的度数21、如图,已知DEBC,CD是ACB的平分线,B70,ACB50,求EDC和BDC的度数22、如图所示,已知ACB和ADB都是直角,且ACAD,P是AB上任意一点求证CPDP23、如图,OM平分POQ,MAOP,MBOQ,A、B为垂足,AB交OM于点N求证OABOBA四、综合题(共1题;共10分)24、如图,在RTABC中,C90,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE1证明DECB;2探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形答案解析部分一、单选题1、【答案】D【考点】线段垂直平分线的性质,菱形的判定,等腰梯形的性质,命题与定理【解析】【分析】此题需要根据平行四边形的判定、等腰梯形的性质、菱形、三角形垂直平分线的性质四个知识点,分别对四个结论进行判断,然后得出正确的结果【解答】A、一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,故本选项错误;B、等腰梯形的两个角不一定相等,还可能互补,故本选项错误;C、对角线互相垂直的平行四边形是菱形,故本选项错误;D、三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等,故本选项正确;故选D【点评】本题考查了平行四边形的判定、等腰梯形的性质、菱形、三角形垂直平分线的性质,考查的知识点较多,但难度不大,注意细心判断各个选项2、【答案】D【考点】全等三角形的判定与性质【解析】【分析】由作法易得ODOD,OCOC,CDCD,得到三角形全等,由全等得到角相等,是用的全等的性质,全等三角形的对应角相等【解答】由作法易得ODOD,OCOC,CDCD,依据SSS可判定CODCOD(SSS,则CODCOD,即AOBAOB(全等三角形的对应角相等故选D【点评】本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键3、【答案】D【考点】三角形内角和定理,等腰三角形的性质【解析】【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上根据条件可知第三种高在三角形的边上这种情况不成了,因而应分另两种情况进行讨论。当高在三角形内部时(如图1,顶角是60;当高在三角形外部时(如图2,顶角是120故选D【点评】熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出60一种情况,把三角形简单的认为是锐角三角形。4、【答案】D【考点】三角形的外角性质,等腰三角形的性质,正方形的性质【解析】【分析】由三角形及正方形对角线相互垂直平分相等的性质进行计算求解,把各角之间关系找到即可求解。四边形ABCD是正方形,CECAACE4590135,E225AFC902251125故选D【点评】解题关键是熟练掌握三角形的外角的性质三角形的一个外角等于与它不相邻的两个内角的和。5、【答案】D【考点】全等三角形的判定【解析】【分析】根据三角形全等的判定方法可知除去被墨迹污染的部分仍然有两个角及夹边确定,可以根据ASA确定所画三角形与原三角形全等。故选D6、【答案】B【考点】三角形三边关系【解析】【分析】三角形的三边关系三角形的任两边之和大于第三边,任两边之差小于第三边。A、128,能组成三角形。7、【答案】B【考点】命题与定理【解析】【解答】解A、如果一个四边形两条对角线相等,那么这个四边形不一定是矩形,还有可能是等腰梯形,故错误;B、如果一个平行四边形两条对角线相互垂直,那么这个平行四边形是菱形,故正确;C、如果一个四边形两条对角线平分所在的角,那么这个四边形可能是正方形,故错误;D、如果一个四边形两条对角线相互垂直平分,这个四边形有可能是菱形,故错误;故选B【分析】利于矩形、菱形的判定定理分别判断后即可确定正确的选项8、【答案】B【考点】命题与定理【解析】【解答】解全等三角形的周长相等,所以正确;全等三角形的对应角相等,所以正确;全等三角形的面积相等,所以正确;面积相等的两个三角形不一定全等,所以错误故选B【分析】根据全等三角形的性质对进行判断;根据全等三角形的判定方法对进行判断9、【答案】B【考点】全等三角形的性质【解析】【解答】解ABCDEF,ABDE,ACDF,BCEF,DE30CM,DF25CM,AB30CM,AC25CM,ABC的周长为100CM,CB100302545(CM),故选B【分析】根据全等三角形的性质可得ABDE,ACDF,BCEF,再根据ABC的周长为100CM可得答案10、【答案】C【考点】三角形内角和定理【解析】【解答】解BOC130,OBCOCB180BOC18013050,BO和CO分别平分ABC和ACB,ABC2OBC,ACB2OCB,ABCACB2(OBCOCB)100,A180(ABCACB)18010080,故选C【分析】在BOC中由三角形的内角和可求得OBCOCB50,再由角平分线的定义可得ABCACB2(OBCOCB)100,在ABC中再利用三角形内角和定理可求得A二、填空题11、【答案】SSS【考点】作图尺规作图的定义【解析】【解答】OCOC,ODOD,CDCD,从而可以利用SSS判定其全等【分析】以O为圆心,任意长为半径用圆规画弧,分别交OA、OB于点C、D;任意画一点O,画射线OA,以O为圆心,OC长为半径画弧CE,交OA于点C;以C为圆心,CD长为半径画弧,交弧CE于点D;过点D画射线OB,AOB就是与AOB相等的角则通过作图我们可以得到OCOC,ODOD,CDCD,从而可以利用SSS判定其全等12、【答案】2【考点】三角形的角平分线、中线和高【解析】【解答】解AD是ABC中BC边上的中线,BDDCBC,ABD和ADC的周长的差(ABBCAD)(ACBCAD)ABAC532(CM)故答案为2【分析】根据三角形的周长的计算方法得到,ABD的周长和ADC的周长的差就是AB与AC的差13、【答案】40【考点】全等三角形的性质【解析】【解答】解设BAC为4X,则ACB为3X,ABC为2XBACACBABC1804X3X2X180,解得X20ABC2X40ABCDEFDEFABC40故填40【分析】先运用三角形内角和求出ABC40再运用全等三角形的性质即可得14、【答案】【考点】三角形的角平分线、中线和高,角平分线的性质,线段垂直平分线的性质【解析】【解答】解三角形的三条角平分线交于一点,这点到三条边的距离相等,正确;三角形的三条中线交于一点,正确;三角形的三条高线所在的直线交于一点,正确;三角形的三条边的垂直平分线交于一点,这点到三个顶点的距离相等,正确综上所述,说法正确的是故答案为【分析】根据角平分线上的点到角的两边距离相等,三角形中线、高线的性质以及线段垂直平分线上的点到线段两端点的距离相等对各小题分析判断即可得解15、【答案】65【考点】三角形内角和定理,三角形的外角性质【解析】【解答】解A50,ABC中,ABCACB130,BCECBD360130230,BF、CF是ABC的两个外角的平分线,CBFBCF(BCECBD)230115,BCF中,F18011565故答案为65【分析】先根据三角形内角和定理,求得ABCACB130,得到BCECBD360130230,再根据BF、CF是ABC的两个外角的平分线,求得CBFBCF,最后根据三角形内角和定理,求得F的度数16、【答案】45【考点】三角形内角和定理,三角形的外角性质【解析】【解答】解ABD是ABC的外角,ABDAC6050110,1180ABDD1801102545【分析】根据三角形的外角的性质及三角形的内角和定理可求得17、【答案】32【考点】全等三角形的判定与性质【解析】【解答】解ABCB,BEAC,ADDC,ABDCBDABC6432,在ABD和CED中,ABDCED(SAS),EABD32,故答案为32【分析】根据三线合一得出ADDC,ABD27,证ABDCED,推出EABD即可18、【答案】40【考点】三角形内角和定理,翻折变换(折叠问题)【解析】【解答】解如图,CEFCFECABC,CEFCFEAB7565140,又将纸片的一角折叠,使点C落在ABC内,CEFCFCEFCFE140,CECCEC140140280,140,21802CECCE答案为40【分析】先根据三角形的内角和定理求出CEFCFEAB,再根据折叠变换的性质,即可求出CECCEC的度数,然后利用两个平角的度数求解即可三、解答题19、【答案】证明E是AOB的平分线上一点,ECOA,EDOB,DECE,OEOE,在RTODE与RTOCE中,RTODERTOCE(HL),ODOC,DOC是等腰三角形,OE是AOB的平分线,OE是CD的垂直平分线【考点】全等三角形的判定与性质,角平分线的性质,线段垂直平分线的性质【解析】【分析】先根据E是AOB的平分线上一点,ECOB,EDOA得出ODEOCE,可得出ODOC,DECE,OEOE,可得出DOC是等腰三角形,由等腰三角形的性质即可得出OE是CD的垂直平分线20、【答案】解CDAB,EFAB,CDEF,2BCD,又12,1BCD,DGBC,ACB3105【考点】平行线的判定与性质,三角形内角和定理【解析】【分析】证明CDEF,得到2BCD,证明DGBC,根据平行线的性质证明即可21、【答案】解CD是ACB的平分线,ACB50,BCDACB25,DEBC,EDCDCB25,BDEB180,B70,BDE110,BDCBDEEDC1102585EDC25,BDC85【考点】平行线的性质,三角形内角和定理【解析】【分析】由CD是ACB的平分线,ACB50,根据角平分线的性质,即可求得DCB的度数,又由DEBC,根据两直线平行,内错角相等,即可求得EDC的度数,根据两直线平行,同旁内角互补,即可求得BDE的度数,即可求得BDC的度数22、【答案】证明在RTACB和RTADB中,RTACBRTADB(HL)BCBD,CBADBABPBP,CBPDBP(SAS)CPDP【考点】全等三角形的判定与性质【解析】【分析】先根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国红尾扯旗鱼项目创业计划书
- 中国桑蚕养殖项目创业计划书
- 中国开源软件项目创业计划书
- 中国集群通信系统项目创业计划书
- 2025年学校教职工公寓租赁合同样本示例
- 中国牛肝菌项目创业计划书
- 中国奶山羊养殖项目创业计划书
- 中国干黄花菜项目创业计划书
- 中国豆制品加工项目创业计划书
- 网络营销与品牌建设-洞察阐释
- 2024年新高考II卷高考历史试卷(真题+答案)
- 2024年黑龙江医疗卫生事业单位招聘(药学)备考试题库(含答案)
- 2024年新高考1卷数学真题试卷及答案
- 湖北省武汉市洪山区2023-2024学年七年级下学期期末考试语文试卷
- 施工现场水电费协议
- 畜产品加工学复习资料
- 预防接种门诊验收表4-副本
- 离心泵的结构与工作原理通用课件
- 畜牧业的生物安全与疫情防控
- 国开电大可编程控制器应用实训形考任务5
- 关于皮肤科药物知识讲座
评论
0/150
提交评论