已阅读5页,还剩25页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
独立重复试验与二项分布刘永慧复习旧知识N1、条件概率N对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率。N2、条件概率的概率公式NPB|AN3、相互独立事件N事件A是否发生对事件B发生的概率没有影响,这时我们称两个事件A,B相互独立,并把这两个事件叫做相互独立事件。N4、相互独立事件的概率公式NP(AB)P(A)P(B)引例1、投掷一枚相同的硬币5次,每次正面向上的概率为05。2、某同学玩射击气球游戏,每次射击击破气球的概率为07,现有气球10个。3、某篮球队员罚球命中率为08,罚球6次。4、口袋内装有5个白球、3个黑球,放回地抽取5个球。问题上面这些试验有什么共同的特点提示从下面几个方面探究(1实验的条件;(2)每次实验间的关系;(3)每次试验可能的结果;(4)每次试验的概率;(5)每个试验事件发生的次数创设情景1、投掷一枚相同的硬币5次,每次正面向上的概率为05。2、某同学玩射击气球游戏,每次射击击破气球的概率为07,现有气球10个。3、某篮球队员罚球命中率为08,罚球6次。4、口袋内装有5个白球、3个黑球,放回地抽取5个球。问题上面这些试验有什么共同的特点包含了N个相同的试验;每次试验相互独立;5次、10次、6次、5次创设情景1、投掷一枚相同的硬币5次,每次正面向上的概率为05。2、某同学玩射击气球游戏,每次射击击破气球的概率为07,现有气球10个。3、某篮球队员罚球命中率为08,罚球6次。4、口袋内装有5个白球、3个黑球,放回地抽取5个球。问题上面这些试验有什么共同的特点每次试验只有两种可能的结果A或创设情景1、投掷一枚相同的硬币5次,每次正面向上的概率为05。2、某同学玩射击气球游戏,每次射击击破气球的概率为07,现有气球10个。3、某篮球队员罚球命中率为08,罚球6次。4、口袋内装有5个白球、3个黑球,放回地抽取5个球。问题上面这些试验有什么共同的特点每次出现A的概率相同为P,的概率也相同,为1P;创设情景1、投掷一枚相同的硬币5次,每次正面向上的概率为05。2、某同学玩射击气球游戏,每次射击击破气球的概率为07,现有气球10个。3、某篮球队员罚球命中率为08,罚球6次。4、口袋内装有5个白球、3个黑球,放回地抽取5个球。问题上面这些试验有什么共同的特点试验”成功”或“失败”可以计数,即试验结果对应于一个离散型随机变量结论N1每次试验是在同样的条件下进行的N2各次试验中的事件是相互独立的N3每次试验都只有两种结果发生与不发生N4每次试验,某事件发生的概率是相同的N5每次试验,某事件发生的次数是可以列举的。注意独立重复试验,是在相同条件下各次之间相互独立地进行的一种试验;每次试验只有“成功”或“失败”两种可能结果;每次试验“成功”的概率为P,“失败”的概率为1PN次独立重复试验一般地,在相同条件下重复做的N次试验,各次试验的结果相互独立,就称为N次独立重复试验判断下列试验是不是独立重复试验1依次投掷四枚质地不同的硬币,3次正面向上(NO请举出生活中碰到的独立重复试验的例子。2某人射击,击中目标的概率P是稳定的,他连续射击了10次,其中6次击中YES3口袋装有5个白球,3个红球,2个黑球,从中依次抽取5个球,恰好抽出4个白球NO4口袋装有5个白球,3个红球,2个黑球,从中有放回的抽取5个球,恰好抽出4个白球YES俺投篮,也是讲概率地情境创设OHHHH,进球拉第一投,我要努力又进了,不愧是姚明啊第二投,动作要注意第三次登场了这都进了太离谱了第三投,厉害了啊第四投,大灌蓝哦姚明作为中锋,他职业生涯的罚球命中率为08,假设他每次命中率相同,请问他4投3中的概率是多少问题1在4次投篮中姚明恰好命中1次的概率是多少分解问题1在4次投篮中他恰好命中1次的情况有几种1234表示投中,表示没投中,则4次投篮中投中1次的情况有以下四种2说出每种情况的概率是多少3上述四种情况能否同时发生学生活动问题2在4次投篮中姚明恰好命中2次的概率是多少问题在4次投篮中姚明恰好命中3次的概率是多少问题4在4次投篮中姚明恰好命中4次的概率是多少问题5在N次投篮中姚明恰好命中K次的概率是多少伯努利概型N伯努利数学家DOCN定义N在N次独立重复试验中,事件A恰好发生K次(0KN)次得概率问题叫做伯努利概型。N伯努利概型的概率计算意义建构,2,1,01NKPPCKPKNKKNNL在N次独立重复试验中,如果事件在其中次试验中发生的概率是,那么在N次独立重复试验中这个事件恰好发生K次的概率是1公式适用的条件2公式的结构特征(其中K0,1,2,N)实验总次数事件A发生的次数事件A发生的概率意义理解基本概念2、二项分布一般地,在N次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为P,那么在N次独立重复试验中,事件A恰好发生K次的概率为此时称随机变量X服从二项分布,记作XBN,P,并称P为成功概率。其中N,P为参数X01KNP应用举例N例1、在人寿保险事业中,很重视某一年龄段的投保人的死亡率,假如每个投保人能活到65岁的概率为06,试问3个投保人中(1)全部活到65岁的概率;(2)有2个活到65岁的概率;(3)有1个活到65岁的概率。跟踪练习1、某射手每次射击击中目标的概率是08求这名射手在10次射击中,(1)恰有8次击中目标的概率;(2)至少有8次击中目标的概率。(结果保留两个有效数字)2、某气象站天气预报的准确率为某气象站天气预报的准确率为80,计,计算(结果保留两个有效数字)算(结果保留两个有效数字)(1)5次预报中恰有次预报中恰有4次准确的概率;次准确的概率;(2)5次预报中至少有次预报中至少有4次准确的概率次准确的概率变式5填写下列表格姚明投中次数X01234相应的概率P数学运用(其中K0,1,2,N)随机变量X的分布列与二项式定理有联系吗应用举例N例2、100件产品中有3件不合格品,每次取一件,又放回的抽取3次,求取得不合格品件数X的分布列。跟踪练习N1、某厂生产电子元件,其产品的次品率为5现从一批产品中任意地连
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 九江市城市发展集团有限公司2025年下半年招聘工作人员岗位计划调整及改报笔试考试参考试题及答案解析
- 2026中国电信天翼视联校园招聘考试笔试模拟试题及答案解析
- 2025辽宁省沈抚示范区教育系统面向部分普通高校2026应届毕业生招聘事业编制急需紧缺教师12人笔试考试备考题库及答案解析
- 2025年下半年南昌大学共青学院中层干部招聘1人笔试考试备考题库及答案解析
- 2025河北建工雄安建设发展有限公司社会招聘考试笔试备考试题及答案解析
- 2025福建三明市职业技能鉴定指导中心招聘见习工作人员1人笔试考试备考试题及答案解析
- 2025广东省云浮市百万英才汇南粤招聘市级机关事业单位紧缺人才11人(华南农业大学专场)考试笔试备考试题及答案解析
- 2025年福建福州市鼓楼区城投集团招聘9人笔试考试参考试题及答案解析
- 2025甘肃省庆阳市西峰区显胜卫生院招聘3人笔试考试备考题库及答案解析
- 2026京能集团鄂尔多斯市昊华精煤有限责任公司校园招聘考试笔试参考题库附答案解析
- 2025内蒙古呼和浩特春华水务开发集团有限责任公司招聘工作人员84人笔试备考试卷带答案解析
- 健身房开业投资预算方案
- 水稻种子采购合同范本
- 2025福建漳州市古雷水务发展有限公司补充招聘5人考试笔试参考题库附答案解析
- 感悟厚德载物的课件
- 【地】世界主要气候类型-热带气候情景教学课件-2025-2026学年七年级地理上学期(湘教版2024)
- 【数】综合与实践 最短路径问题课时1课件2025-2026学年八年级数学人教版2024上册
- 法学专业学生职业规划与就业指导
- 泄密应急处置预案
- 2025年特种设备安全管理员考试题库答案
- 通信冬季施工安全培训课件
评论
0/150
提交评论