




已阅读5页,还剩35页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
CHAPTER5FLEXIBLEMODELSTRUCTURESFORDISCRETECHOICEANALYSISCHANDRARBHATTHEUNIVERSITYOFTEXASATAUSTINDEPTOFCIVIL,ARCHITECTURALCHOICEOFTRAVELMODE,DESTINATIONANDCAROWNERSHIPLEVELINTHETRAVELDEMANDFIELDPURCHASEINCIDENCEANDBRANDCHOICEINTHEMARKETINGFIELDANDCHOICEOFMARITALSTATUSANDNUMBEROFCHILDRENINSOCIOLOGYINTHISCHAPTER,WEPROVIDEANOVERVIEWOFTHEMOTIVATIONFOR,ANDSTRUCTUREOF,ADVANCEDDISCRETECHOICEMODELSDERIVEDFROMRANDOMUTILITYMAXIMIZATIONTHEDISCUSSIONISINTENDEDTOFAMILIARIZEREADERSWITHSTRUCTURALALTERNATIVESTOTHEMULTINOMIALLOGITMNLANDTOTHEMODELSDISCUSSEDINCHAPTER13BEFOREPROCEEDINGTOAREVIEWOFADVANCEDDISCRETECHOICEMODELS,THEASSUMPTIONSOFTHEMNLFORMULATIONARESUMMARIZEDTHISISUSEFULSINCEALLOTHERRANDOMUTILITYMAXIMIZINGDISCRETECHOICEMODELSFOCUSONRELAXINGONEORMOREOFTHESEASSUMPTIONSTHEREARETHREEBASICASSUMPTIONSWHICHUNDERLIETHEMNLFORMULATIONTHEFIRSTASSUMPTIONISTHATTHERANDOMCOMPONENTSOFTHEUTILITIESOFTHEDIFFERENTALTERNATIVESAREINDEPENDENTANDIDENTICALLYDISTRIBUTEDIIDWITHATYPEIEXTREMEVALUEORGUMBELDISTRIBUTIONTHEASSUMPTIONOFINDEPENDENCEIMPLIESTHATTHEREARENOCOMMONUNOBSERVEDFACTORSAFFECTINGTHEUTILITIESOFTHEVARIOUSALTERNATIVESTHISASSUMPTIONISVIOLATED,FOREXAMPLE,IFADECISIONMAKERASSIGNSAHIGHERUTILITYTOALLTRANSITMODESBUS,TRAIN,ETCBECAUSEOFTHEOPPORTUNITYTOSOCIALIZEORIFTHEDECISIONMAKERASSIGNSALOWERUTILITYTOALLTHETRANSITMODESBECAUSEOFTHELACKOFPRIVACYINSUCHSITUATIONS,THESAMEUNDERLYINGUNOBSERVEDFACTOROPPORTUNITYTOSOCIALIZEORLACKOFPRIVACYIMPACTSONTHEUTILITIESOFALLTRANSITMODESASINDICATEDINCHAPTER13,PRESENCEOFSUCHCOMMONUNDERLYINGFACTORSACROSSMODALUTILITIESHASIMPLICATIONSFORCOMPETITIVESTRUCTURETHEASSUMPTIONOFIDENTICALLYDISTRIBUTEDACROSSALTERNATIVESRANDOMUTILITYTERMSIMPLIESTHATTHEEXTENTOFVARIATIONINUNOBSERVEDFACTORSAFFECTINGMODALUTILITYISTHESAMEACROSSALLMODESINGENERAL,THEREISNOTHEORETICALREASONTOBELIEVETHATTHISWILLBETHECASEFOREXAMPLE,IFCOMFORTISANUNOBSERVEDVARIABLETHEVALUESOFWHICHVARYCONSIDERABLYFORTHETRAINMODEBASEDON,SAY,THEDEGREEOFCROWDINGONDIFFERENTTRAINROUTESBUTLITTLEFORTHEAUTOMOBILEMODE,THENTHERANDOMCOMPONENTSFORTHEAUTOMOBILEANDTRAINMODESWILLHAVEDIFFERENTVARIANCESUNEQUALERRORVARIANCESHAVESIGNIFICANTIMPLICATIONSFORCOMPETITIVESTRUCTURETHESECONDASSUMPTIONOFTHEMNLMODELISTHATITMAINTAINSHOMOGENEITYINRESPONSIVENESSTOATTRIBUTESOFALTERNATIVESACROSSINDIVIDUALSIE,ANASSUMPTIONOFRESPONSEHOMOGENEITYMORESPECIFICALLY,THEMNLMODELDOESNOTALLOWSENSITIVITYORTASTEVARIATIONSTOANATTRIBUTEEG,TRAVELCOSTORTRAVELTIMEINAMODECHOICEMODELDUETOUNOBSERVEDINDIVIDUALCHARACTERISTICSHOWEVER,UNOBSERVEDINDIVIDUALCHARACTERISTICSCANANDGENERALLYWILLAFFECTRESPONSIVENESSFOREXAMPLE,SOMEINDIVIDUALSBYTHEIRINTRINSICNATUREMAYBEEXTREMELYTIMECONSCIOUSWHILEOTHERINDIVIDUALSMAYBE“LAIDBACK”ANDLESSTIMECONSCIOUSIGNORINGTHEEFFECTOFUNOBSERVEDINDIVIDUALATTRIBUTESCANLEADTOBIASEDANDINCONSISTENTPARAMETERANDCHOICEPROBABILITYESTIMATESSEECHAMBERLAIN,1980THETHIRDASSUMPTIONOFTHEMNLMODELISTHATTHEERRORVARIANCECOVARIANCESTRUCTUREOFTHEALTERNATIVESISIDENTICALACROSSINDIVIDUALSIE,ANASSUMPTIONOFERRORVARIANCECOVARIANCEHOMOGENEITYTHEASSUMPTIONOFIDENTICALVARIANCEACROSSINDIVIDUALSCANBEVIOLATEDIF,FOREXAMPLE,THETRANSITSYSTEMOFFERSDIFFERENTLEVELSOFCOMFORTANUNOBSERVEDVARIABLEONDIFFERENTROUTESIE,SOMEROUTESMAYBESERVEDBYTRANSITVEHICLESWITHMORECOMFORTABLESEATINGANDTEMPERATURECONTROLTHANOTHERSTHEN,THETRANSITERRORVARIANCEACROSSINDIVIDUALSALONGTHETWOROUTESMAYDIFFERTHEASSUMPTIONOFIDENTICALERRORCOVARIANCEOFALTERNATIVESACROSSINDIVIDUALSMAYNOTBEAPPROPRIATEIFTHEEXTENTOFSUBSTITUTABILITYAMONGALTERNATIVESDIFFERSACROSSINDIVIDUALSTOSUMMARIZE,ERRORVARIANCECOVARIANCEHOMOGENEITYIMPLIESTHESAMECOMPETITIVESTRUCTUREAMONGALTERNATIVESFORALLINDIVIDUALS,ANASSUMPTIONWHICHISGENERALLYDIFFICULTTOJUSTIFYTHETHREEASSUMPTIONSDISCUSSEDABOVETOGETHERLEADTOTHESIMPLEANDELEGANTCLOSEDFORMMATHEMATICALSTRUCTUREOFTHEMNLHOWEVER,THESEASSUMPTIONSALSOLEAVETHEMNLMODELSADDLEDWITHTHE“INDEPENDENCEOFIRRELEVANTALTERNATIVES”IIAPROPERTYATTHEINDIVIDUALLEVELLUCEANDSUPPES1965FORADETAILEDDISCUSSIONOFTHISPROPERTYSEEALSOBENAKIVAANDLERMAN1985THUS,RELAXINGTHETHREEASSUMPTIONSMAYBEIMPORTANTINMANYCHOICECONTEXTSINTHISCHAPTERTHEFOCUSISONTHREECLASSESOFDISCRETECHOICEMODELSTHATRELAXONEORMOREOFTHEASSUMPTIONSDISCUSSEDABOVETHEFIRSTCLASSOFMODELSLABELEDAS“HETEROSCEDASTICMODELS”ISRELATIVELYRESTRICTIVETHEYRELAXTHEIDENTICALLYDISTRIBUTEDACROSSALTERNATIVESERRORTERMASSUMPTION,BUTDONOTRELAXTHEINDEPENDENCEASSUMPTIONPARTOFTHEFIRSTASSUMPTIONABOVEORTHEASSUMPTIONOFRESPONSEHOMOGENEITYSECONDASSUMPTIONABOVETHESECONDCLASSOFMODELSLABELEDAS“MIXEDMULTINOMIALLOGITMMNLMODELS”ANDTHETHIRDCLASSOFMODELSLABELEDAS“MIXEDGENERALIZEDEXTREMEVALUEMGEVMODELS”AREVERYGENERALMODELSINTHISCLASSAREFLEXIBLEENOUGHTORELAXTHEINDEPENDENCEANDIDENTICALLYDISTRIBUTEDACROSSALTERNATIVESERRORSTRUCTUREOFTHEMNLASWELLASTORELAXTHEASSUMPTIONOFRESPONSEHOMOGENEITYTHERELAXATIONOFTHETHIRDASSUMPTIONIMPLICITINTHEMULTINOMIALLOGITANDIDENTIFIEDONTHEPREVIOUSPAGEISNOTCONSIDEREDINDETAILINTHISCHAPTER,SINCEITCANBERELAXEDWITHINTHECONTEXTOFANYGIVENDISCRETECHOICEMODELBYPARAMETERIZINGAPPROPRIATEERRORSTRUCTUREVARIANCESANDCOVARIANCESASAFUNCTIONOFINDIVIDUALATTRIBUTESSEEBHAT2007FORADETAILEDDISCUSSIONOFTHESEPROCEDURESTHEREADERWILLNOTETHATTHEGENERALIZEDEXTREMEVALUEGEVMODELSDESCRIBEDINCHAPTER13RELAXTHEIIDASSUMPTIONPARTIALLYBYALLOWINGCORRELATIONINUNOBSERVEDCOMPONENTSOFDIFFERENTALTERNATIVESTHEADVANTAGEOFTHEGEVMODELSISTHATTHEYMAINTAINCLOSEDFORMEXPRESSIONSFORTHECHOICEPROBABILITIESTHELIMITATIONOFTHESEMODELSISTHATTHEYARECONSISTENTWITHUTILITYMAXIMIZATIONONLYUNDERRATHERSTRICTANDOFTENEMPIRICALLYVIOLATEDRESTRICTIONSONTHEDISSIMILARITYANDALLOCATIONPARAMETERSSPECIFICALLY,THEDISSIMILARITYANDALLOCATIONPARAMETERSSHOULDBEBOUNDEDBETWEEN0AND1FORGLOBALCONSISTENCYWITHUTILITYMAXIMIZATION,ANDTHEALLOCATIONPARAMETERSFORANYALTERNATIVESHOULDADDTO1THEORIGINOFTHESERESTRICTIONSCANBETRACEDBACKTOTHEREQUIREMENTTHATTHEVARIANCEOFTHEJOINTALTERNATIVESBEIDENTICALINTHEGEVMODELSALSO,GEVMODELSDONOTRELAXASSUMPTIONSRELATEDTOTASTEHOMOGENEITYINRESPONSETOANATTRIBUTESUCHASTRAVELTIMEORCOSTINAMODECHOICEMODELDUETOUNOBSERVEDDECISIONMAKERCHARACTERISTICS,ANDCANNOTBEAPPLIEDTOPANELDATAWITHTEMPORALCORRELATIONINUNOBSERVEDFACTORSWITHINTHECHOICESOFTHESAMEDECISIONMAKINGAGENTHOWEVER,GEVMODELSDOOFFERCOMPUTATIONALTRACTABILITY,PROVIDEATHEORETICALLYSOUNDMEASUREFORBENEFITVALUATION,ANDCANFORMTHEBASISFORFORMULATINGMIXEDMODELSTHATACCOMMODATERANDOMTASTEVARIATIONSANDTEMPORALCORRELATIONSINPANELDATASEESECTION4THERESTOFTHISCHAPTERISSTRUCTUREDASFOLLOWSTHECLASSOFHETEROSCEDASTICMODELS,MIXEDMULTINOMIALLOGITMODELS,ANDMIXEDGENERALIZEDEXTREMEVALUEMODELSAREDISCUSSEDINSECTIONS2,3,AND4,RESPECTIVELYSECTION5PRESENTSRECENTADVANCESINTHEAREAOFSIMULATIONTECHNIQUESTOESTIMATETHEMIXEDMULTINOMIALANDMIXEDGENERALIZEDEXTREMEVALUECLASSOFMODELSOFSECTION3AND4THEESTIMATIONOFTHEHETEROSCEDASTICMODELSINSECTION2DOESNOTREQUIRETHEUSEOFSIMULATIONANDISDISCUSSEDWITHINSECTION2SECTION6CONCLUDESTHEPAPERWITHASUMMARYOFTHEGROWINGNUMBEROFAPPLICATIONSTHATUSEFLEXIBLEDISCRETECHOICESTRUCTURES2THEHETEROSCEDASTICCLASSOFMODELSTHECONCEPTTHATHETEROSCEDASTICITYINALTERNATIVEERRORTERMSIE,INDEPENDENT,BUTNOTIDENTICALLYDISTRIBUTEDERRORTERMSRELAXESTHEIIAASSUMPTIONHASBEENRECOGNIZEDFORQUITESOMETIMENOWTHREEMODELSHAVEBEENPROPOSEDTHATALLOWNONIDENTICALRANDOMCOMPONENTSTHEFIRSTISTHENEGATIVEEXPONENTIALMODELOFDAGANZO1979,THESECONDISTHEODDBALLALTERNATIVEMODELOFRECKER1995ANDTHETHIRDISTHEHETEROSCEDASTICEXTREMEVALUEHEVMODELOFBHAT1995OFTHESE,DAGANZOSMODELHASNOTSEENMUCHAPPLICATION,SINCEITREQUIRESTHATTHEPERCEIVEDUTILITYOFANYALTERNATIVENOTEXCEEDANUPPERBOUNDTHISARISESBECAUSETHENEGATIVEEXPONENTIALDISTRIBUTIONDOESNOTHAVEAFULLRANGEDAGANZOSMODELALSODOESNOTNESTTHEMNLMODELRECKER1995PROPOSEDTHEODDBALLALTERNATIVEMODELWHICHPERMITSTHERANDOMUTILITYVARIANCEOFONE“ODDBALL”ALTERNATIVETOBELARGERTHANTHERANDOMUTILITYVARIANCESOFOTHERALTERNATIVESTHISSITUATIONMIGHTOCCURBECAUSEOFATTRIBUTESWHICHDEFINETHEUTILITYOFTHEODDBALLALTERNATIVE,BUTAREUNDEFINEDFOROTHERALTERNATIVESRECKERSMODELHASACLOSEDFORMSTRUCTUREFORTHECHOICEPROBABILITIESHOWEVER,ITISRESTRICTIVEINREQUIRINGTHATALLALTERNATIVESEXCEPTONEHAVEIDENTICALVARIANCEBHAT1995FORMULATEDTHEHEVMODEL,WHICHASSUMESTHATTHEALTERNATIVEERRORTERMSAREDISTRIBUTEDWITHATYPEIEXTREMEVALUEDISTRIBUTIONTHEVARIANCESOFTHEALTERNATIVEERRORTERMSAREALLOWEDTOBEDIFFERENTACROSSALLALTERNATIVESWITHTHENORMALIZATIONTHATTHEERRORTERMSOFONEOFTHEALTERNATIVESHAVEASCALEPARAMETEROFONEFORIDENTIFICATIONCONSEQUENTLY,THEHEVMODELCANBEVIEWEDASAGENERALIZATIONOFRECKERSODDBALLALTERNATIVEMODELTHEHEVMODELDOESNOTHAVEACLOSEDFORMSOLUTIONFORTHECHOICEPROBABILITIES,BUTINVOLVESONLYAONEDIMENSIONALINTEGRATIONREGARDLESSOFTHENUMBEROFALTERNATIVESINTHECHOICESETITALSONESTSTHEMNLMODELANDISFLEXIBLEENOUGHTOALLOWDIFFERENTIALCROSSELASTICITIESAMONGALLPAIRSOFALTERNATIVESINTHEREMAINDEROFTHISDISCUSSIONOFHETEROSCEDASTICMODELS,THEFOCUSISONTHEHEVMODEL21HEVMODELSTRUCTURETHERANDOMUTILITYOFALTERNATIVEUIOFALTERNATIVEIFORANINDIVIDUALINRANDOMUTILITYMODELSTAKESTHEFORMWESUPPRESSTHEINDEXFORINDIVIDUALSINTHEFOLLOWINGPRESENTATION,IIIVU1WHEREISTHESYSTEMATICCOMPONENTOFTHEUTILITYOFALTERNATIVEIWHICHISAFUNCTIONOFOBSERVEDIATTRIBUTESOFALTERNATIVEIANDOBSERVEDCHARACTERISTICSOFTHEINDIVIDUAL,ANDISTHERANDOMICOMPONENTOFTHEUTILITYFUNCTIONLETCBETHESETOFALTERNATIVESAVAILABLETOTHEINDIVIDUALLETTHERANDOMCOMPONENTSINTHEUTILITIESOFTHEDIFFERENTALTERNATIVESHAVEATYPEIEXTREMEVALUEDISTRIBUTIONWITHALOCATIONPARAMETEREQUALTOZEROANDASCALEPARAMETEREQUALTOFORTHEITHALTERNATIVETHEIRANDOMCOMPONENTSAREASSUMEDTOBEINDEPENDENT,BUTNONIDENTICALLYDISTRIBUTEDTHUS,THEPROBABILITYDENSITYFUNCTIONANDTHECUMULATIVEDISTRIBUTIONFUNCTIONOFTHERANDOMERRORTERMFORTHEITHALTERNATIVEAREAND1/IZIIIIEIZIEIIDFFF2THERANDOMUTILITYFORMULATIONOFEQUATION1,COMBINEDWITHTHEASSUMEDPROBABILITYDISTRIBUTIONFORTHERANDOMCOMPONENTSINEQUATION2ANDTHEASSUMEDINDEPENDENCEAMONGTHERANDOMCOMPONENTSOFTHEDIFFERENTALTERNATIVES,ENABLESUSTODEVELOPTHEPROBABILITYTHATANINDIVIDUALWILLCHOOSEALTERNATIVEIFROMTHESETCOFAVAILABLEALTERNATIVES3IIIJIIJCIJIJIDVJIUPII1,ALFOR,ROB,WHEREANDARETHEPROBABILITYDENSITYFUNCTIONANDCUMULATIVEDISTRIBUTIONFUNCTIONOFTHESTANDARDTYPEIEXTREMEVALUEDISTRIBUTION,RESPECTIVELY,ANDAREGIVENBYSEEJOHNSONANDKOTZ,19704ANDTTEETTSUBSTITUTINGINEQUATION3,THEPROBABILITYOFCHOOSINGALTERNATIVEICANBEREWRITTENASIW/FOLLOWS5DWVPJIIIJ,CWIIFTHESCALEPARAMETERSOFTHERANDOMCOMPONENTSOFALLALTERNATIVESAREEQUAL,THENTHEPROBABILITYEXPRESSIONINEQUATION5COLLAPSESTOTHATOFTHEMNLNOTETHATTHEVARIANCEOFTHERANDOMERRORTERMOFALTERNATIVEIISEQUALTO,WHEREISTHESCALEPARAMETERI6/2IITHEHEVMODELDISCUSSEDABOVEAVOIDSTHEPITFALLSOFTHEIIAPROPERTYOFTHEMNLMODELBYALLOWINGDIFFERENTSCALEPARAMETERSACROSSALTERNATIVESINTUITIVELY,WECANEXPLAINTHISBYREALIZINGTHATTHEERRORTERMREPRESENTSUNOBSERVEDCHARACTERISTICSOFANALTERNATIVETHATIS,ITREPRESENTSUNCERTAINTYASSOCIATEDWITHTHEEXPECTEDUTILITYORTHESYSTEMATICPARTOFUTILITYOFANALTERNATIVETHESCALEPARAMETEROFTHEERRORTERM,THEREFORE,REPRESENTSTHELEVELOFUNCERTAINTYITSETSTHERELATIVEWEIGHTSOFTHESYSTEMATICANDUNCERTAINCOMPONENTSINESTIMATINGTHECHOICEPROBABILITYWHENTHESYSTEMATICUTILITYOFSOMEALTERNATIVELCHANGES,THISAFFECTSTHESYSTEMATICUTILITYDIFFERENTIALBETWEENANOTHERALTERNATIVEIANDTHEALTERNATIVELHOWEVER,THISCHANGEINTHESYSTEMATICUTILITYDIFFERENTIALISTEMPEREDBYTHEUNOBSERVEDRANDOMCOMPONENTOFALTERNATIVEITHELARGERTHESCALEPARAMETEROREQUIVALENTLY,THEVARIANCEOFTHERANDOMERRORCOMPONENTFORALTERNATIVEI,THEMORETEMPEREDISTHEEFFECTOFTHECHANGEINTHESYSTEMATICUTILITYDIFFERENTIALSEETHENUMERATOROFTHECUMULATIVEDISTRIBUTIONFUNCTIONTERMINEQUATION5ANDSMALLERISTHEELASTICITYEFFECTONTHEPROBABILITYOFCHOOSINGALTERNATIVEIINPARTICULAR,TWOALTERNATIVESWILLHAVETHESAMEELASTICITYEFFECTDUETOACHANGEINTHESYSTEMATICUTILITYOFANOTHERALTERNATIVEONLYIFTHEYHAVETHESAMESCALEPARAMETERONTHERANDOMCOMPONENTSTHISPROPERTYISALOGICALANDINTUITIVEEXTENSIONOFTHECASEOFTHEMNL,INWHICHALLSCALEPARAMETERSARECONSTRAINEDTOBEEQUALAND,THEREFORE,ALLCROSSELASTICITIESAREEQUALASSUMINGALINEARINPARAMETERSFUNCTIONALFORMFORTHESYSTEMATICCOMPONENTOFUTILITYFORALLALTERNATIVES,THERELATIVEMAGNITUDESOFTHECROSSELASTICITIESOFTHECHOICEPROBABILITIESOFANYTWOALTERNATIVESIANDJWITHRESPECTTOACHANGEINTHEKTHLEVELOFSERVICEVARIABLEOFANOTHERALTERNATIVELSAY,ARECHARACTERIZEDBYTHESCALEPARAMETEROFTHERANDOMCOMPONENTSOFALTERNATIVESIANDJKLX6IFIFJPJJJIJIXXKLKLLLJKLIKL22HEVMODELESTIMATIONTHEHEVMODELCANBEESTIMATEDUSINGTHEMAXIMUMLIKELIHOODTECHNIQUEASSUMEALINEARINPARAMETERSSPECIFICATIONFORTHESYSTEMATICUTILITYOFEACHALTERNATIVEGIVENBYFORTHEQTHQIQIXVINDIVIDUALANDITHALTERNATIVETHEINDEXFORINDIVIDUALSISINTRODUCEDINTHEFOLLOWINGPRESENTATIONSINCETHEPURPOSEOFTHEESTIMATIONISTOOBTAINTHEMODELPARAMETERSBYMAXIMIZINGTHELIKELIHOODFUNCTIONOVERALLINDIVIDUALSINTHESAMPLETHEPARAMETERSTOBEESTIMATEDARETHEPARAMETERVECTORANDTHESCALEPARAMETERSOFTHERANDOMCOMPONENTOFEACHOFTHEALTERNATIVESONEOFTHESCALEPARAMETERSISNORMALIZEDTOONEFORIDENTIFIABILITYTHELOGLIKELIHOODFUNCTIONTOBEMAXIMIZEDCANBEWRITTENASQQCIWIJCJIGQIIQDWVYL1,LOG,7WHEREISTHECHOICESETOFALTERNATIVESAVAILABLETOTHEQTHINDIVIDUALANDISDEFINEDASFOLLOWSCQYQI8OTHERWIS0,21,21,EALTRNIVCHOSENDVIULF1IIQYQITHELOGLIKELIHOODFUNCTIONINEQUATION7HASNOCLOSEDFORMEXPRESSION,BUTCANBEESTIMATEDINASTRAIGHTFORWARDMANNERUSINGGAUSSIANQUADRATURETODOSO,DEFINEAVARIABLETHEN,ANDALSODEFINEAFUNCTIONASUEDWULNGQI9JVGIQIIJ,CJQIQEQUATION7CANBEWRITTENASUDEGYLQIUQICIQLOG010THEEXPRESSIONWITHINPARENTHESISINEQUATION7CANBEESTIMATEDUSINGTHELAGUERREGAUSSIANQUADRATUREFORMULA,WHICHREPLACESTHEINTEGRALBYASUMMATIONOFTERMSOVERACERTAINNUMBERSAYKOFSUPPORTPOINTS,EACHTERMCOMPRISINGTHEEVALUATIONOFTHEFUNCTIONGQIATTHESUPPORTPOINTKMULTIPLIEDBYAPROBABILITYMASSORWEIGHTASSOCIATEDWITHTHESUPPORTPOINTTHESUPPORTPOINTSARETHEROOTSOFTHELAGUERREPOLYNOMIALOFORDERK,ANDTHEWEIGHTSARECOMPUTEDBASEDONASETOFTHEOREMSPROVIDEDBYPRESSETAL19923THEMIXEDMULTINOMIALLOGITMMNLCLASSOFMODELSTHEHEVMODELINTHEPREVIOUSSECTIONANDTHEGEVMODELSINCHAPTER13HAVETHEADVANTAGETHATTHEYAREEASYTOESTIMATETHELIKELIHOODFUNCTIONFORTHESEMODELSEITHERINCLUDESAONEDIMENSIONALINTEGRALINTHEHEVMODELORISINCLOSEDFORMINTHEGEVMODELSHOWEVER,THESEMODELSARERESTRICTIVESINCETHEYONLYPARTIALLYRELAXTHEIIDERRORASSUMPTIONACROSSALTERNATIVESINTHISSECTION,WEDISCUSSTHEMMNLCLASSOFMODELSTHATAREFLEXIBLEENOUGHTOCOMPLETELYRELAXTHEINDEPENDENCEANDIDENTICALLYDISTRIBUTEDERRORSTRUCTUREOFTHEMNLASWELLASTORELAXTHEASSUMPTIONOFRESPONSEHOMOGENEITYTHEMIXEDMMNLCLASSOFMODELSINVOLVESTHEINTEGRATIONOFTHEMNLFORMULAOVERTHEDISTRIBUTIONOFUNOBSERVEDRANDOMPARAMETERSITTAKESTHESTRUCTUREWHERE11DFLPQIQI,|QIIXJQIEISTHEPROBABILITYTHATINDIVIDUALQCHOOSESALTERNATIVEI,ISAVECTOROFOBSERVEDVARIABLESSPECIFICQIPQXTOINDIVIDUALQANDALTERNATIVEI,REPRESENTSPARAMETERSWHICHARERANDOMREALIZATIONSFROMADENSITYFUNCTIONF,ANDISAVECTOROFUNDERLYINGMOMENTPARAMETERSCHARACTERIZINGFTHEFIRSTAPPLICATIONSOFTHEMIXEDLOGITSTRUCTUREOFEQUATION11APPEARTOHAVEBEENBYBOYDANDMELLMAN1980ANDCARDELLANDDUNBAR1980HOWEVER,THESEWERENOTINDIVIDUALLEVELMODELSAND,CONSEQUENTLY,THEINTEGRATIONINHERENTINTHEMIXEDLOGITFORMULATIONHADTOBEEVALUATEDONLYONCEFORTHEENTIREMARKETTRAIN1986ANDBENAKIVAETAL1993APPLIEDTHEMIXEDLOGITTOCUSTOMERLEVELDATA,BUTCONSIDEREDONLYONEORTWORANDOMCOEFFICIENTSINTHEIRSPECIFICATIONSTHUS,THEYWEREABLETOUSEQUADRATURETECHNIQUESFORESTIMATIONTHEFIRSTAPPLICATIONSTOREALIZETHEFULLPOTENTIALOFMIXEDLOGITBYALLOWINGSEVERALRANDOMCOEFFICIENTSSIMULTANEOUSLYINCLUDEREVELTANDTRAIN1998ANDBHAT1998A,BOTHOFWHICHWEREORIGINALLYCOMPLETEDINEARLY1996ANDEXPLOITEDTHEADVANCESINSIMULATIONMETHODSTHEMMNLMODELSTRUCTUREOFEQUATION11CANBEMOTIVATEDFROMTWOVERYDIFFERENTBUTFORMALLYEQUIVALENTPERSPECTIVESSPECIFICALLY,AMMNLSTRUCTUREMAYBEGENERATEDFROMANINTRINSICMOTIVATIONTOALLOWFLEXIBLESUBSTITUTIONPATTERNSACROSSALTERNATIVESERRORCOMPONENTSSTRUCTUREORFROMANEEDTOACCOMMODATEUNOBSERVEDHETEROGENEITYACROSSINDIVIDUALSINTHEIRSENSITIVITYTOOBSERVEDEXOGENOUSVARIABLESRANDOMCOEFFICIENTSSTRUCTURE31ERRORCOMPONENTSSTRUCTURETHEERRORCOMPONENTSSTRUCTUREPARTITIONSTHEOVERALLRANDOMTERMASSOCIATEDWITHTHEUTILITYOFEACHALTERNATIVEINTOTWOCOMPONENTSONETHATALLOWSTHEUNOBSERVEDERRORTERMSTOBENONIDENTICALANDNONINDEPENDENTACROSSALTERNATIVES,ANDANOTHERTHATISSPECIFIEDTOBEINDEPENDENTANDIDENTICALLYTYPEIEXTREMEVALUEDISTRIBUTEDACROSSALTERNATIVESSPECIFICALLY,CONSIDERTHEFOLLOWINGUTILITYFUNCTIONFORINDIVIDUALQANDALTERNATIVEI12QIIQIIZYUWHEREANDARETHESYSTEMATICANDRANDOMCOMPONENTSOFUTILITY,ANDISFURTHERPARTITIONEDIIIINTOTWOCOMPONENTS,ANDISAVECTOROFOBSERVEDDATAASSOCIATEDWITHALTERNATIVEI,SOMEQIZQIIZOFTHEELEMENTSOFWHICHMIGHTALSOAPPEARINTHEVECTORISARANDOMVECTORWITHZEROMEANTHEQIYCOMPONENTINDUCESHETEROSCEDASTICITYANDCORRELATIONACROSSUNOBSERVEDUTILITYCOMPONENTSOFTHEQIZALTERNATIVESDEFININGAND,WEOBTAINTHEMMNLMODELSTRUCTUREFORTHE,QIQIZYXCHOICEPROBABILITYOFALTERNATIVEIFORINDIVIDUALQTHEEMPHASISINTHEERRORCOMPONENTSSTRUCTUREISONALLOWINGAFLEXIBLESUBSTITUTIONPATTERNAMONGALTERNATIVESINAPARSIMONIOUSFASHIONTHISISACHIEVEDBYTHE“CLEVER”SPECIFICATIONOFTHEVARIABLEVECTORCOMBINEDWITHUSUALLYTHESPECIFICATIONOFINDEPENDENTNORMALLYDISTRIBUTEDQIZRANDOMELEMENTSINTHEVECTORFOREXAMPLE,MAYBESPECIFIEDTOBEAROWVECTOROFDIMENSIONM,IZWITHEACHROWREPRESENTINGAGROUPMM1,2,MOFALTERNATIVESSHARINGCOMMONUNOBSERVEDCOMPONENTSTHEROWSCORRESPONDINGTOTHEGROUPSOFWHICHIISAMEMBERTAKESAVALUEOFONEANDOTHERROWSTAKEAVALUEOFZEROTHEVECTOROFDIMENSIONMMAYBESPECIFIEDTOHAVEINDEPENDENTELEMENTS,EACHELEMENTHAVINGAVARIANCECOMPONENTTHERESULTOFTHISSPECIFICATIONISACOVARIANCE2MOFAMONGALTERNATIVESINGROUPMANDHETEROSCEDASTICITYACROSSTHEGROUPSOFALTERNATIVESTHIS2MSTRUCTUREISLESSRESTRICTIVETHANTHENESTEDLOGITSTRUCTUREINTHATANALTERNATIVECANBELONGTOMORETHANONEGROUPALSO,BYSTRUCTURE,THEVARIANCEOFTHEALTERNATIVESISDIFFERENTMOREGENERALSTRUCTURESFORINEQUATION12AREPRESENTEDBYBENAKIVAANDBOLDUC1996ANDBROWNSTONEANDTRAIN1999IZEXAMPLESOFTHEERRORCOMPONENTSMOTIVATIONINTHELITERATUREINCLUDEBHAT1998B,JONGETAL2002A,B,WHELANETAL2002,ANDBATLEYETAL2001A,BTHEREADERISALSOREFERREDTOTHEWORKOFWALKERANDHERCOLLEAGUESBENAKIVAETAL,2001WALKER,2002ANDMUNIZAGAANDALVAREZDAZIANO2002FORIMPORTANTIDENTIFICATIONISSUESINTHECONTEXTOFTHEERRORCOMPONENTSMMNLMODEL32RANDOMCOEFFICIENTSSTRUCTURETHERANDOMCOEFFICIENTSSTRUCTUREALLOWSHETEROGENEITYINTHESENSITIVITYOFINDIVIDUALSTOEXOGENOUSATTRIBUTESTHEUTILITYTHATANINDIVIDUALQASSOCIATESWITHALTERNATIVEIISWRITTENAS13QIIQIXUWHEREISAVECTOROFEXOGENOUSATTRIBUTES,ISAVECT
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司洗毛炭化挡车工职业考核试卷及答案
- 2025湖南长沙市宁乡市中医医院招聘编外聘用人员20人模拟试卷及参考答案详解
- 乙烷生产线项目施工方案
- 绿色建筑勘察与设计方案
- 河道整治工程设计与施工技术方案
- 热力能源利用综合方案
- 施工技术创新与提升方案
- 多重耐药院感知识培训
- 2025湖南新宁县招聘教师30人模拟试卷及答案详解(历年真题)
- 建筑拆除工程环境保护方案
- 2025至2030全球及中国InfiniBand行业发展趋势分析与未来投资战略咨询研究报告
- 2025年下半年拜城县招聘警务辅助人员(260人)考试模拟试题及答案解析
- 宅基地争议申请书
- 2025年杭州上城区总工会公开招聘工会社会工作者9人笔试参考题库附答案解析
- 【MOOC期末】《中国马克思主义与当代》(北京科技大学)期末慕课答案
- KTV管理章程协议
- 《海洋学》第二章 地球及海洋概观
- GB/T 2794-2022胶黏剂黏度的测定
- GH/T 1091-2014代用茶
- TSAAD型螺杆式空气压缩机
- 无菌技术操作技能评分标准
评论
0/150
提交评论