信息技术应用成果教学设计徐佳_第1页
信息技术应用成果教学设计徐佳_第2页
信息技术应用成果教学设计徐佳_第3页
信息技术应用成果教学设计徐佳_第4页
信息技术应用成果教学设计徐佳_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课题椭圆及其标准方程教材人教版高二(上)第八章第一节授课教师赣县中学徐佳1教学目标(1)了解圆锥曲线的实际背景,感受圆锥曲线在刻划现实世界和解决实际问题中的作用。(2)经历从具体情境中抽象出椭圆模型的过程,掌握椭圆的定义、标准方程及简单几何性质。(3)通过椭圆与方程的学习,进一步体会数形结合的思想。2教学重点椭圆的标准方程;坐标法的基本思想。3教学难点椭圆的标准方程的推导与化简;坐标法的运用。4教学任务分析(1)学生已有的主要知识结构学生已经学习过圆,了解圆的定义,经历了根据圆的特征,建立适当的坐标系,求圆的标准方程的过程。(2)建立新的知识结构与圆类比,弄清椭圆上的点所满足的条件,建立适当的坐标系,求椭圆的标准方程。5教学基本流程6媒体选用多媒体课件,几何画板。7教学过程问题设计意图师生活动备注1、回顾圆的定义,让学生用准备好的工具画圆。学生动手画圆,结合图形,重现思维轨迹,为椭圆的学习作好铺1由学生动手实验,并说出圆的定义;画圆时,绳子一端固定在纸板上,一端栓在笔上学生再次体会笔尖到回忆圆的定义,与已有的知识联系通过作图,提出问题,引入椭圆的定义义根据条件,确定椭圆的标准方程小结与布置作业垫。定点的距离不变的情景。2将圆心分开变为两个,绳子两端固定在这两个定点上,用笔勾住绳子,将会画出什么样的曲线呢提出新的问题,激发学生的好奇心,引发学习兴趣。1师生一起画图,得到一个压扁的“圆”椭圆;2教师演示课件拱桥、橄榄球、天体的运动轨迹等。让学生领略到数学的美,认识到数学与生活息息相关。3在运动中,椭圆上的点所满足的几何条件是什么4应该如何描述动点M所满足的几何条件1弄清曲线上的点所满足的几何条件是建立曲线方程的关键之一。2让学生体会类比思想,整理实验,归纳抽象成数学问题。1引导学生分析实验,发现两个确定的量定点及绳长,变动的量笔尖(即椭圆上的点)。2再次演示画椭圆的过程,引导学生发现规律椭圆上的点到两个定点的距离之和总是等于绳长。这里应给予学生充分思考和讨论的机会,引导他们说出自己的发现,并逐步修正得到椭圆的定义。5将两位学生所画的椭圆投影到大屏幕,并提出问题在绳长相同的情况下,为什么画出的椭圆有圆有扁呢使学生认识到椭圆的形状受到两定点的距21,F离的影响。1教师改变原有的两定点的距离画椭圆并观察图形,大家有什么发现学生21,F的距离愈近椭圆愈圆,的距离愈远椭圆愈扁。6如果只改变绳长,而不改变的距21,F离,又会出现什么结果呢使学生进一步认识到椭圆的形状也受到绳长的影响。教师如果定点的位置相同,只改变绳长,椭圆又有什么变化学生绳愈短椭圆愈扁,绳愈长椭圆愈圆。教师设|21F|2C,|1M|2M|2A,如何通过A,C刻划椭圆的扁圆程度。学生当AC越小时,椭圆愈圆,当越大时,椭圆越扁。7椭圆与两定点位置及定线段长有关,是否给定了线段长和两定点位置就一定能作出椭圆呢加深对概念的理解师生共同探讨,并演示课件,展示2A2C,2A2C,2A2C时,轨迹是椭圆当2A2C时,轨迹是一条线段,是以为端点的21,F线段当2A0,那么,焦点的坐标分21,F别是C,0,C,0又设点M与的21,F距离的和等于常数2A(2A|21F|)。由定义可知,椭圆就是集合PM|1|2M|2A。|1F|2YCX,|2|YCX,2YCX2YCX2A能否将上面所得等式两边同时平方应该如何处理两个根号的位置更有利于化简在学生已懂得一个根式化简的情况下,针对具体的问题,寻求解决问题的想法。请34名学生板演方程化简,教师在教室中走动,观察学生的化简情况。组织学生评价板演情况,使学生明确若将上面等式直接平方,则化简过程繁杂且各项的次数很高;若将两个根式放在等式的两边,平方后可消去X2,Y2,C2项简化计算,强调方法的选择。通过投影,将化简的过程呈现给学生。教师设|21F|2C,|1M|2A,观察图形能否找出A,C,2CA所表示的线段及其关系呢结合图形,赋予A,C,2CA以具体的几何意义。(展示图形)学生可以看出A,C是以为底边21F的等腰三角形的腰及底边的一半。教师不妨令A2C2B2则方程可简化为B2X2A2Y2A2B2,两边同时除以A2B2得12BYAX,这就是焦点在X轴上椭圆的标准方程。这里A与B的关系如何学生AB0通过类比,让学生写出焦点在Y轴上椭圆的标准方程,并根据方程分辨椭圆的焦点在X轴或Y轴上。教师用总结性的语言引导学生对椭圆方程再认识椭圆标准方程的形式左边是两个分式的平方和,分母是一个正数,右边是1。椭圆的三个参数ABC满足22CBA。椭圆标准方程中的系数哪个,YX小,焦点就在哪个轴上。1教材中例12补充练习已知椭圆的方程为5162YX则(1)ABC(2)焦点在轴上,其焦点坐标为,焦距为。(3)若CD为过左焦点F1的弦,则CF1F2的周长为,F2CD的周长为。椭圆标准方程的应用。2位学生板演例1,补充练习由学生口答。教师如果将椭圆方程改为1625YX1,上述问题(1)(2)(3)有何变化学生(回答略)小结(1)知识方面总结了椭圆的定义;探讨了椭圆的扁圆;研究了在A、C的四种不同关系下的曲线轨迹;求出了椭圆的标准方程;了解焦点与方程形式的关系。(以上各知识点可借助课件展示出来)(2)能力方面巩固了求曲线方程的步骤与方法,学会用运动变化的观点研究问题,通过椭圆知识学习进一步体会到数学知识的和谐美,几何图形的对称美。布置作业P96习题81的1、2、3板书设计椭圆及其标准方程一椭圆的定义二椭圆的标准方程椭圆标准方程的推导例一例二回顾反思这节课教学效果不错,主要归功于把学习的主动权交给学生,注意师生双方互动外,还借助了多媒体,利用几何画板创设情境,使得学习内容直观、生动,抓住解析几何的核心数形结合。1创设情境是上好课的基础,借助多媒体,利用几何画板从学生已有的知识进行迁移,采用类比的方法让学生主动学习、合作交流,体验数学的发现和创造过

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论