




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.高中数学空间向量巧解平行、垂直关系编稿老师刘咏霞一校黄楠二校杨雪审核郑建彬一、考点突破知识点课标要求题型说明空间向量巧解平行、垂直关系1. 能够运用向量的坐标判断两个向量的平行或垂直。2. 理解直线的方向向量与平面的法向量。3. 能用向量方法解决线面、面面的垂直与平行问题,体会向量方法在立体几何中的作用。选择题填空题解答题注意用向量方法解决平行和垂直问题中坐标系的建立以及法向量的求法。二、重难点提示重点:用向量方法判断有关直线和平面的平行和垂直关系问题。难点:用向量语言证明立体几何中有关平行和垂直关系的问题。考点一:直线的方向向量与平面的法向量1. 直线l上的向量a或与a共线的向量叫作直线l
2、的方向向量。2. 如果表示向量a的有向线段所在直线垂直于平面,则称这个向量垂直于平面,记作a,此时向量a叫作平面的法向量。【核心归纳】 一条直线的方向向量有无数多个,一个平面的法向量也有无数多个,且它们是共线的。 在空间中,给定一个点a和一个向量a,那么以向量a为法向量且经过点a的平面是唯一确定的。精品.【随堂练习】 已知a(1,1,0),b(1,0,1),c(0,1,1),则平面abc的一个法向量的单位向量是( )a. (1,1,1) b. c. d. 思路分析:设出法向量坐标,列方程组求解。答案:设平面abc的一个法向量为n(x,y,z),(0,1,1),(1,1,0),(1,0,1),则
3、,xyz,又单位向量的模为1,故只有b正确。技巧点拨:一般情况下,使用待定系数法求平面的法向量,步骤如下:(1)设出平面的法向量为n(x,y,z)。(2)找出(求出)平面内的两个不共线的向量a(a1,b1,c1),b(a2,b2,c2)。(3)根据法向量的定义建立关于x,y,z的方程组(4)解方程组,取其中的一个解,即得法向量。考点二:用向量法证明空间中的平行关系、垂直关系线线平行设两条不重合的直线l,m的方向向量分别为a(a1,b1,c1),b(a2,b2,c2),则lmab(a1,b1,c1)k(a2,b2,c2)线面平行设l的方向向量为a(a1,b1,c1),的法向量为u(a2,b2,c
4、2),则lauau0a1a2b1b2c1c20面面平行设,的法向量分别为u(a1,b1,c1),v(a2,b2,c2),则uv(a1,b1,c1)k(a2,b2,c2)线线垂直设两条不重合的直线l,m的方向向量分别为a(a1,b1,c1),b(a2,b2,c2),则lmabab0a1a2b1b2c1c20线面垂直设l的方向向量为a(a1,b1,c1),的法向量为u(a2,b2,c2),则lauaku(a1,b1,c1)k(a2,b2,c2)(kr)面面垂直设,的法向量分别为u(a1,b1,c1),v(a2,b2,c2),则uvuv0a1a2b1b2c1c20【核心突破】 用向量法解决立体几何问
5、题是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想。 用空间向量解决立体几何问题的“三步曲”: 精品.例题1 (浙江改编)如图,在四面体abcd中,ad平面bcd,bccd,ad2,bd2,m是ad的中点,p是bm的中点,点q在线段ac上,且aq3qc。证明:pq平面bcd。思路分析:利用直线的方向向量和平面的法向量垂直证明线面平行。答案:证明:如图,取bd的中点o,以o为原点,od、op所在射线为y、z轴的正半轴,建立空间直角坐标系oxyz。由题意知,a(0,2),b(0
6、,0),d(0,0)。设点c的坐标为(x0,y0,0)。因为,所以q。因为m为ad的中点,故m(0,1),又p为bm的中点,故p,所以。又平面bcd的一个法向量为a(0,0,1),故a0。又pq平面bcd,所以pq平面bcd。技巧点拨:解决此类问题的依据是要根据线面平行的判定定理,可证直线的方向向量与平面内某一向量平行,也可证直线的方向向量与平面的法向量垂直。精品.例题2 如图所示,正三棱柱(底面为正三角形的直三棱柱)abca1b1c1的所有棱长都为2,d为cc1的中点。求证:ab1平面a1bd。思路分析:证明线面垂直可以通过证明线与面的法向量平行来实现。答案:证明:如图所示,取bc的中点o,
7、连接ao,因为abc为正三角形,所以aobc。在正三棱柱abca1b1c1中,平面abc平面bcc1b1,ao平面bcc1b1,取b1c1的中点o1,以o为原点,分别以,所在直线为x轴,y轴,z轴建立空间直角坐标系,则b(1,0,0),d(1,1,0),a1(0,2,),a(0,0,),b1(1,2,0)。(1,2,),(2,1,0)。=(1,2,)设平面a1bd的法向量为n(x,y,z),因为n,n,故,令x1,则y2,z,故n(1,2,)为平面a1bd的一个法向量,而(1,2,),所以n,所以n,故ab1平面a1bd。技巧点拨:解决此类问题的依据是要根据线面垂直的判定定理,证明直线的方向向
8、量与平面的法向量平行。例题3 如图,在直三棱柱abca1b1c1中,abbc,abbc2,bb11,e为bb1的中点,求证:平面aec1平面aa1c1c。思路分析:建系写出坐标,分别求出两个平面的法向量,证明两个平面垂直。答案:证明:由题意得ab,bc,b1b两两垂直,以b为原点,分别以ba,bc,bb1所在直线为x,y,z轴,建立如图所示的空间直角坐标系,精品.则a(2,0,0),a1(2,0,1),c(0,2,0),c1(0,2,1),e(0,0,),则(0,0,1),(2,2,0),(2,2,1),(2,0,)。设平面aa1c1c的一个法向量为n1(x,y,z),则令x1,得y1,n1(
9、1,1,0)。设平面aec1的一个法向量为n2(x0,y0,z0),则令z04,得x01,y01。n2(1,1,4)。n1n2111(1)040,n1n2.平面aec1平面aa1c1c。技巧点拨:利用空间向量证明面面垂直通常可以有两个途径,一是利用两个平面垂直的判定定理将面面垂直问题转化为线面垂直进而转化为线线垂直;二是直接求解两个平面的法向量,由两个法向量垂直,得面面垂直。向量法证明面面垂直的优越性主要体现在不必考虑图形的位置关系。恰当建系或用基向量表示后,只须经过向量运算就可得到要证明的结果,思路方法“公式化”,降低了思维难度。利用向量解决立体几何中的探索性问题【满分训练】在正方体abcd
10、a1b1c1d1中,e,f分别是棱ab,bc的中点,棱bb1上是否存在一点m,使得d1m平面efb1。思路分析:设出点m的坐标,利用线面垂直列方程组求解。答案:建立如图所示的空间直角坐标系dxyz,设正方体的棱长为2,则e(2,1,0),f(1,2,0),d1(0,0,2),b1(2,2,2)。设m(2,2,m),则(1,1,0),(0,1,2),(2,2,m2)。d1m平面efb1,d1mef,d1mb1e,0且0,精品.于是,m1。故取b1b的中点为m就能满足d1m平面efb1。技巧点拨:对于“是否存在”型问题的探索方式有两种:一种是根据条件做出判断,再进一步论证。另一种是利用空间向量,先
11、设出假设存在的点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”。(答题时间:40分钟)1. (东营高二检测)已知平面的法向量为a(1,2,2),平面的法向量为b(2,4,k),若,则k() a. 4 b. 4 c. 5 d. 52. (青岛高二检测)若,则直线ab与平面cde的位置关系是()a. 相交 b. 平行 c. 在平面内 d. 平行或在平面内3. 已知(1,5,2),(3,1,z),若,(x1,y,3),且bp平面abc,则实数x,y,z分别为()a. ,4 b. ,4 c. ,2,4 d. 4,154. (汕头模拟)如图,已知正方体a
12、bcd-a1b1c1d1的棱长为3,点e在aa1上,点f在cc1上,且aefc11。(1)求证:e,b,f,d1四点共面;(2)若点g在bc上,bg,点m在bb1上,gmbf,垂足为h,求证:em平面bcc1b1。5. 下列命题中,正确的是_。(填序号) 若n1,n2分别是平面,的一个法向量,则n1n2; 若n1,n2分别是平面,的一个法向量,则n1n20; 若n是平面的一个法向量,a与平面共面,则na0; 若两个平面的法向量不垂直,则这两个平面一定不垂直。6. 平面上有四个互异的点a,b,c,d,已知(2)()0,则abc的形状是 三角形。精品.7. 如图,直四棱柱abcda1b1c1d1中
13、,底面abcd是矩形,ab2,ad1,aa13,m是bc的中点。在dd1上是否存在一点n,使mndc1?并说明理由。8. (衡水调研卷)如图所示,在四棱柱abcd中,平面abcd,底面abcd是边长为1的正方形,侧棱2。(1)证明:ac;(2)是否在棱a1a上存在一点p,使得,且面ab1c1面pb1c1。精品.1. d 解析:,ab,ab282k0,k5。2. d 解析:,、共面,则ab与平面cde的位置关系是平行或在平面内。3. b 解析:,0,即352z0,解得z4,又bp平面abc,则 ,解得。4. 证明:(1)以b为原点,以ba,bc,bb1为x轴,y轴,z轴,建立如图所示的空间直角坐
14、标系bxyz,则b(0,0,0),e(3,0,1),f(0,3,2),d1(3,3,3),则(3,0,1),(0,3,2),(3,3,3),所以。由向量共面的充要条件知e,b,f,d1四点共面。(2)设m(0,0,z0),g,则,而(0,3,2),由题设得3z020,得z01。故m(0,0,1),有(3,0,0)。又(0,0,3),(0,3,0),所以0,0,从而mebb1,mebc。又bb1bcb,故em平面bcc1b1。5. 解析:一定正确,中两平面有可能重合。6. 等腰 解析:(2)()()()0,故abc为等腰三角形。7. 解:如图所示,建立以d为坐标原点,da为x轴,dc为y轴,dd1为z轴的坐标系,则c1(0,2,3),m(,2,0),d(0,0,0)。设n(0,0,h),精品.则(,2,h),(0,2,3),由(,2,h)(0,2,3)43h.当h时,0,此时。存在ndd1,使mndc1。8. 证明:以da,dc,da1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则d(0,0,0),a(1,0,0),c(0,1,0),a1(0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 宁都钢质防火窗施工方案
- 架空建筑垃圾分类方案设计
- 中式建筑排版配色方案设计
- 在全县干部大会的主持词
- 地下室顶板渗漏处理方案
- 双层宴席厅建筑方案设计
- 2025年经济师初级考试 经济基础知识核心考点模拟试卷
- 贵州省茶产业发展现状研究
- 其他收入分享协议的注意事项
- 2025年北京市纪委市监委所属事业单位招聘8人笔试备考题库参考答案详解
- 物流公司驾驶员管理的规章制度
- 【MOOC】大学物理-电磁学-北京理工大学 中国大学慕课MOOC答案
- 35KV集电线路安全施工措施
- 机场监控施工方案
- 北京餐厨垃圾收运合同范本
- 压力容器使用单位安全员题库
- 3输变电工程施工质量验收统一表式(变电工程电气专业)-2024年版
- 大数据产业大数据应用技术创新与实践计划
- 动物疫病检测合同
- 2024-2029年中国汾酒行业供需分析及发展前景研究报告
- 装配式结构吊装施工计算书
评论
0/150
提交评论