




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、复习提问,1.分别写出满足下列条件的角的集合,(1)终边在x轴负半轴上的角的集合,(2)终边在y轴上的角的集合,(3) 终边与坐标轴重合的角的集合,复习提问,2、角的终边落在“射线上”、“直线上”及“互相垂直的两条直线上”的一般表示式,你能写出终边在象限角平分线上的角的集合吗?,复习提问,课本第6页思考与讨论,复习深化,1、已知,角的终边相同,那么的终边在( ) A x轴的非负半轴上 B y轴的非负半轴上 C x轴的非正半轴上 D y轴的非正半轴上,A,2、若=k180+60(kZ),则在( ) A.第一或第三象限 B.第一或第二象限 C.第二或第四象限 D.第三或第四象限,A,复习深化,3
2、、已知角2的终边在x轴的上方,那么是( ) A 第一象限角 B 第一、二象限角 C 第一、三象限角 D 第一、四象限角,C,4、若是第四象限角,则180是( ) A 第一象限角 B 第二象限角 C 第三象限角 D 第四象限角,C,4.用表示 (1)终边关于x轴对称 (2)终边关于y轴对称 (3)终边关于原点对称,复习深化,复习深化,5、在直角坐标系中,若与终边互相垂直,那么与之间的关系是( ) A. =+90o B =90o C =k360o+90o+,kZ D =k360o90o+, kZ,D,6、若90135,则的范围是_,+的范围是_;,(0,45),(180,270),请回忆:在初中几
3、何里,我们学习过角的度量,1度的角是怎样定义的呢?,周角的 为1度的角,这种用1角作单位来度量角的制度叫做角度制 ,今天我们来学习另一种在数学和其他学科中常用的度量角的制度弧度制.,复习导入,1.1.2 弧度制和弧度制与角度制的换算,新课,目的要求,1.理解弧度制的意义. 2.熟练进行角度制与弧度制的换算. 3.能应用弧长公式与扇形面积公式解决有关问题,重点 . 难点,重点 : 用弧度制表示角 难点 : 弧度制的概念,角度制,把一个圆分成360等分,每一份 这种描述角的方式叫做角度制。,当半径不同时,同样的圆心角所对的弧长不相等。,A,B,A,B,1. 角的弧度制是如何引入的?,在同一个圆中,
4、圆心角的大小与它所对的弧长一一对应.当半径不同时,同样大的圆心角所对的弧长不相等.,探讨,当n=300时,可以计算弧长L=,当半径不同时,同样的圆心角所对的弧长与半径之比是常数.我们称这个常数为弧度数.,思考下列问题,2. 1弧度是如何定义的?,长度等于半径长的圆弧所对 的圆心角叫做1弧度的角.,(注:弧度的单位符号是rad,读作弧度),4.角的弧度制与角的大小有关, 与角所在圆的半径的大小是否有关?,这种以弧度为单位来度量角的制度叫做弧度制.,3.平角 、周角的弧度数,2,3,周角的弧度数是多少? 平角的弧度数呢?,周角等于360 圆周长为L=2R,周角的弧度数= 2 RR= 2,同理,平角
5、的弧度数为,思考下列问题,5.角的弧度与角所在圆的半径、角所对的弧长有何关系?,(l为弧长,r为半径),6.为什么要引入弧度制?好处是什么?,弧度制是十进制,而角度制是六十进制,求圆心角时,结果是,圆心角的弧度数.,约定: 正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0.,新 课 讲 解,用“弧度”与“度”去度量每一个角时,除了零角以外,所得到的量数都是不同的,但它们既然是度量同一个角的结果,二者就可以相互换算,角度制与弧度制的换算,7.角度制与弧度制如何换算?,思考下列问题,例2. 把 化成度,解:1rad=,双向沟通,例1 把45化成弧度,解 45= 45rad= rad,解 r
6、ad = 180 =108,例2 把 rad化成度,练习,1 把-300化成弧度,解 1= rad,2 把弧度化为角度,解 1rad=,量角器是常用的度量角的工具,0o,90o,180o,请说出量角器上角度数所对应角的弧度数,0,15o,30o,450,600,750,1050,120o,135o,150o,165o,写出一些特殊角对应的角度和弧度,15 ,45 ,75 ,135,300 ,角度制与弧度制的联系与区别:,双向沟通,例1. (1) 把11230化成弧度(精确到0.001); (2)把11230化成弧度(用表示)。,解: (1)11230=112.5,,所以11230112.50.
7、01751.969rad.,(2) 11230=112.5 = .,注意: 一般地,“弧度”与“rad“通常略去不写,而只写这个角所对应的弧度数.,双向沟通,用弧度表示终边在轴线上的角的集合,(1);(2);(3),1把下列各角化成的形式:,2.下列角的终边相同的是(),A,与,与,与,与,B,C,D,练习,B,4. 5弧度的角所在的象限为( ) A.第一象限B.第二象限 C.第三象限D.第四象限,3.将分针拨快15分钟,则分针转过的弧度数是( ) A.- B. C.- D.,C,D,练习,正角 零角 负角,正实数 零 负实数,角的集合,实数集R,这种对应关系使得数学中与角相关的运算变得简洁,
8、 相关公式也有了更简单的形式,8. 角度制与弧度制都能在角的集合与实数的集合 之间建立一种一一对应的关系吗?,思考下列问题,由弧度的定义可知,角的弧度数的绝对值满足:,弧长等于弧所对的圆心角弧度数的绝对值与半径的积.,采用角度制时,证明 如图,因为圆心角为的扇形的面积为,所以,扇形的面积,3 已知扇形的周长为10cm, 面积为4cm2,求扇形的中心角.,解 设扇形的中心角的弧度数为 , 弧长为l,半径为R,分析:要求中心角,根据公式 ,需求弧长l及半径R.,根据题意:,由得 ,代入得,当R=1时,l=8cm时,当R=4时,l=2cm时,舍去,所求扇形的中心角的弧度数为,1. 在半径为R的圆中,240的中心角所对的弧长为 ,面积为2R2的扇形的中心角等于 弧度。,解:(1)240= ,根据l=R,得,(2)根据S= lR= R2,且S=2R2.,所以 =4.,练一练,2.与角1825的终边相同,且绝对值最小的角的度数是,合弧度。,解:1825=536025,,所以与角1825的终边相同,且绝对值最小的角是25.,合,练一练,3. 已知一半径为R的扇形,它的周长等于所在圆的周长,那么扇形的中心角是多少弧度?合多少度?扇形的面积是多少?,解:周长=2R=2R+l,所以l=2(1)R.,所以扇形的中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030中国调整型内衣行业发展分析及竞争格局与发展趋势预测报告
- 2025至2030中国裤子市场调研及重点企业投资评估规划分析报告
- 2025至2030中国蛋挞行业供需趋势及投资风险报告
- 影像岗位试题带答案
- 银行外包的试题带答案
- 节能环保型漆包线的载流优势探讨
- 液压马达维修试题带答案
- 2025至2030中国英国求购激光雕刻机行业产业运行态势及投资规划深度研究报告
- 2025至2030中国艺术水晶门行业发展研究与产业战略规划分析评估报告
- 小语种的试题带答案
- 《铁路技术管理规程》(普速铁路部分)
- 储能电站基础知识
- 夫妻婚内财产约定协议书范本(2025年)
- 信息技术设备互连 智能家居互联互通 第1部分:架构与要求 征求意见稿
- 2024年数智工程师职业鉴定考试复习题库(含答案)
- 北师大版数学六年级上学期期中试卷
- 中风脑梗死恢复期中医护理方案课件
- 《细菌毒素》课件
- 新《医用X射线诊断与介入放射学》考试复习题库(含答案)
- 校长教职工大会讲话材料
- 中共党史知识竞赛试题及答案
评论
0/150
提交评论