医用高等数学:第二换元积分法_第1页
医用高等数学:第二换元积分法_第2页
医用高等数学:第二换元积分法_第3页
医用高等数学:第二换元积分法_第4页
医用高等数学:第二换元积分法_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2020/12/11,二、第二类换元法,第二节,一、第一类换元法,换元积分法,2020/12/11,问题,解决方法,改变中间变量的设置方法,过程,令,再用“凑微分,二、第二类换元法,难,易,2020/12/11,二、第二类换元法,第一类换元法解决的问题,难求,易求,若所求积分,易求,则得第二类换元积分法,难求,而,2020/12/11,定理2,注:1)保证代换x=(t)的单调连续(有反函数,第二类积分换元公式,代换 x=(t),一起换,2020/12/11,例1 求,解,令,2020/12/11,三角代换,2020/12/11,例2. 求,解: 令,则,原式,2020/12/11,例3. 求,

2、解,令,则,原式,2020/12/11,说明1,以上几例所使用的均为三角代换,三角代换的目的是化掉根式,一般规律如下:当被积函数中含有,可令,可令,可令,2020/12/11,原式,例4. 求,解: 因为,原式,代回原变量,2020/12/11,由直角三角形法,原式,2020/12/11,积分中为了化掉根式是否一定采用三角代换并不是绝对的,需根据被积函数的情况来定,说明,三角代换很繁琐,令,解,2020/12/11,例6,当被积函数含有两种或两种以上的根式 时,可采用令 (其中 为各根指数的最小公倍数,2020/12/11,例7. 求,解: 令,得,原式,方法一,三角恒等法,2020/12/11,方法二:倒代法,利用它常可消去被积函数的分母中的变量因子x,2020/12/11,当分母的阶较高时, 可采用倒代换,令,解,2020/12/11,补充:万能代换法,化为有理函数的积分,三角函数的有理式的积分,2020/12/11,三、小结,两类积分换元法,一)凑微分,二)三角代换、倒代换、根式代换,基本积分表(2,2020/12/11,作业,P89 2: (18-22,2020/12/11,小结,1. 第二类换元法常见类型,令,令,令,或,令,令,2020/12/11,2. 常用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论