郭正光-经济数学第37次授课提纲新_第1页
郭正光-经济数学第37次授课提纲新_第2页
郭正光-经济数学第37次授课提纲新_第3页
郭正光-经济数学第37次授课提纲新_第4页
郭正光-经济数学第37次授课提纲新_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、经济数学授课提纲,第二学期第三十七次授课 授课教师:郭正光,10.5 二阶常系数线性微分方程,上次课内容复习:,特征方程:,实根,二、二阶常系数非齐次线性微分方程,(1),是二阶非齐次方程,的一个特解,Y (x) 是相应齐次方程的通解,定理 2.,则,是非齐次方程的通解 .,证: 将,代入方程左端, 得,是非齐次方程的解,又Y 中含有,两个独立任意常数,证毕,因而 也是通解 .,例如, 方程,有特解,对应齐次方程,有通解,因此该方程的通解为,定理3 设 和 是 的两个特解,则 是 的一个解。,定理 4. 设,分别是方程,的特解, 则,是方程,的特解. (非齐次方程之解的叠加原理),例1,已知微

2、分方程,个解,求此方程满足初始条件,的特解 .,解:,是对应齐次方程的解,且,常数,因而相互独立,故原方程通解为,代入初始条件,故所求特解为,有三,二阶常系数线性非齐次微分方程 :,根据解的结构定理 , 其通解为,求特解的方法,根据 f (x) 的特殊形式 ,的待定形式,代入原方程比较两端表达式以确定待定系数 ., 待定系数法,一、,为实数 ,设特解为,其中 为待定多项式 ,代入原方程 , 得,(1) 若 不是特征方程的根,则取,从而得到特解,形式为,为m次多项式 .,Q (x) 为 m 次待定系数多项式,(2) 若 是特征方程的单根 ,为m 次多项式,故特解形式为,(3) 若 是特征方程的重

3、根 ,是 m 次多项式,故特解形式为,小结,对方程,此结论可推广到高阶常系数线性微分方程 .,即,即,当 是特征方程的 k 重根 时,可设,特解,小结:,对于方程,设特解为,(m次完全多项式),当是特征方程的k重根时,可设特解,例4,的通解.,解: 本题,特征方程为,其根为,对应齐次方程的通解为,设非齐次方程特解为,比较系数, 得,因此特解为,代入方程得,所求通解为,二、,则可设特解:,其中,为特征方程的 k 重根 ( k = 0, 1),上述结论也可推广到高阶方程的情形.,时可设特解为,时可设特解为,提示:,例5 (填空) 设,为特征方程的 k 重根 ( k = 0, 1),例6 求方程 的通解。,本次课小结:,对于方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论