![插值和拟合[学术参考]_第1页](http://file1.renrendoc.com/fileroot_temp2/2021-1/30/9dd1dc82-90c4-4781-b4ba-d260f0ca22e5/9dd1dc82-90c4-4781-b4ba-d260f0ca22e51.gif)
![插值和拟合[学术参考]_第2页](http://file1.renrendoc.com/fileroot_temp2/2021-1/30/9dd1dc82-90c4-4781-b4ba-d260f0ca22e5/9dd1dc82-90c4-4781-b4ba-d260f0ca22e52.gif)
![插值和拟合[学术参考]_第3页](http://file1.renrendoc.com/fileroot_temp2/2021-1/30/9dd1dc82-90c4-4781-b4ba-d260f0ca22e5/9dd1dc82-90c4-4781-b4ba-d260f0ca22e53.gif)
![插值和拟合[学术参考]_第4页](http://file1.renrendoc.com/fileroot_temp2/2021-1/30/9dd1dc82-90c4-4781-b4ba-d260f0ca22e5/9dd1dc82-90c4-4781-b4ba-d260f0ca22e54.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、插值和拟合都是函数逼近或者数值逼近的重要组成部分他们的共同点都是通过已知一些离散点集M上的约束,求取一个定义在连续集合S(M包含于S)的未知连续函数,从而达到获取整体规律的目的,即通过窥几斑来达到知全豹。简单的讲,所谓拟合是指已知某函数的若干离散函数值f1,f2,fn,通过调整该函数中若干待定系数f(1, 2,3), 使得该函数与已知点集的差别(最小二乘意义)最小。如果待定函数是线性,就叫线性拟合或者线性回归(主要在统计中),否则叫作非线性拟合或者非线性回归。表达式也可以是分段函数,这种情况下叫作样条拟合。而插值是指已知某函数的在若干离散点上的函数值或者导数信息,通过求解该函数中待定形式的插值
2、函数以及待定系数,使得该函数在给定离散点上满足约束。插值函数又叫作基函数,如果该基函数定义在整个定义域上,叫作全域基,否则叫作分域基。如果约束条件中只有函数值的约束,叫作Lagrange插值,否则叫作Hermite插值。从几何意义上将,拟合是给定了空间中的一些点,找到一个已知形式未知参数的连续曲面来最大限度地逼近这些点;而插值是找到一个(或几个分片光滑的)连续曲面来穿过这些点。一、 概念的引入1. 插值与拟合在现实生活中的应用l 机械制造:汽车外观设计l 采样数据的重新建构:电脑游戏中场景的显示,地质勘探,医学领域(CT)2. 概念的定义l 插值:基于a,b区间上的n个互异点,给定函数f(x)
3、,寻找某个函数去逼近f(x)。若要求(x)在xi处与f(xi)相等,这类的函数逼近问题称为插值问题,xi即是插值点l 逼近: 当取值点过多时,构造通过所有点的难度非常大。此时选择一个次数较低的函数最佳逼近这些点,一般采用最小二乘法l 光顾: 曲线的拐点不能太多,条件:二阶几何连续不存在多余拐点曲率变化较小l 拟合:曲线设计过程中用插值或通过逼近方法是生成的曲线光滑(切变量连续)光顾二、 插值理论设函数y=f(x)在区间a,b上连续,在a,b上有互异点x0,x1,xn处取值y0,y1,yn 。如果函数(x)在点xi上满足(xi)=yi (i=0,1,2,n),则称(x)是函数y=f(x)的插值函
4、数,x0,x1,xn是插值节点。若此时(x)是代数多项式P(x),则称P(x)为插值多项式。显然 f(x)(x),xa,b1. 拉格朗日插值构造n次多项式Pn (x)= yk lk (x)=y0l0 (x)+y1l1 (x)+ynln (x),这是不超过n次的多项式,其中基函数lk(x)=显然lk (x)满足lk (xi)=此时 Pn(x)f(x),误差Rn(x)=f(x)-Pn(x)= 其中 (a,b)且依赖于x, =(x-x0)(x-x1)(x-xn)很显然,当n=1、插值节点只有两个xk,xk+1时P1(x)=yklk(x)+yk+1lk+1(x)其中基函数lk(x)= lk+1(x)=
5、2. 牛顿插值构造n次多项式Nn(x)=f(x0)+f(x0,x1)(x-x0)+f(x0,x1,x2)(x-x0)(x-x1)+f(x0,x1,x2,xn)(x-x0)(x-x1)(x-xn)称为牛顿插值多项式,其中(二个节点,一阶差商)(三个节点,二阶差商)(n+1个节点,n阶差商)注意:由于插值多项式的唯一性,有时为了避免拉格朗日余项Rn(x)中n+1阶导数的运算,用牛顿插值公式Rn (x)=f(x)-Nn(x)=f(x,x0,xn)n+1(x),其中n+1(x)=(x-x0)(x-x1)(x-xn)3. 分段插值-子区间内,避免函数在某些区间失真1) 线性插值已知n+1个不同节点x0,
6、x1,xn ,构造分段一次线性多项式P(x),使之满足l P(x)在a,b上连续l P(xk)=ykl P(x)在xi,xi+1上是线性函数,P(x)=2) 两点带导数插值-避免尖点、一阶连续区间a,b上两个互异节点xi,xi+1,已知实数y i,y i+1,m i,m i+1,为了构造次数不大于3的多项式 满足条件 引入 , 使之满足 可以求出此时 = + ,其中4. 三次样条插值-二阶可导对于给定n+1个不同节点x0,x1,xn及函数值y0,y1,yn,其中a=x01n。由于该超定方程个数多于未知数个数,当增广矩阵的秩大于系数矩阵的秩时无解。现在求其最小二乘解,它就是使余向量rx=b-Ax
7、的谱范数rx2=(rxTrx)1/2 最小的n维向量。具体解法可以通过求解该方程组的法方程组ATAx=ATb获得。2. Matlab的实现1)线性拟合及多项式拟合ployfit(x,y,i) 以最高次为i的多项式拟合数据点(x,y)例1 x=0 1 2 3 4 5;y=0 21 62 70 77 110;coef=polyfit(x,y,1);a1=coef(1),a0=coef(2);ybest=a1*x+a0;s=sum(y-ybest).2);axis(-1,6,-20,120);plot(x,y, *)hold onplot(x,ybest)例2如下给出从二阶到十阶多项式拟合曲线的比较
8、程序,并给出拟合曲线x=0 1 2 3 4 5;y=0 21 62 70 77 110;xi=0:0.2:5;for n=2:10bb=polyfit(x,y,n);yi=polyval(bb,xi);plot(xi,yi,x,y, * )title(int2str(n), 次多项式拟合曲线)grid onpauseend例3在某个实验中得到如下一组数据:x1234567y0.31010.49000.64000.80000.92001.05001.2000已知x,y满足y=kxn,求参数k与n。提示:y=kxnlny=lnk+nlnx LOG(x)EXP(x)* 可线性化的非线性模型模型形式变换后形式变量和参数的变化YXa1a22) 超定方程的解法例:用最小二乘法求一个形如y=a+bx2的经验公式,是其拟合下表数据:xi1925313844yi19.032.349.073.397.8x=19 25 31 38 44
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广西崇左市龙州县招聘专职化社区工作者13人备考试题及答案解析
- 2025广东中山大学孙逸仙纪念医院消毒供应中心工程岗位和助理技师岗位招聘3人笔试备考试题及答案解析
- 2025广西贺州市昭平县第二高级中学秋季学期招聘数学顶岗教师1人笔试参考题库附答案解析
- 2025广西钦州市钦北区公开储备一批村(社区)“两委”干部后备人才笔试模拟试题及答案解析
- 2025北京招商致远资本投资有限公司负责人招聘1人笔试备考试题及答案解析
- 重金属积累机制-洞察及研究
- 2025-2030中国农业科技成果转化效率与机制优化报告
- 2025-2030中国再生资源行业跨境贸易发展趋势与政策壁垒分析报告
- 不同地质环境下泉水成分比较-洞察及研究
- 粪便有机肥制备技术-洞察及研究
- 2025年河北高考生物试卷真题答案详解及备考指导
- 宁德新能源verify测试题库
- 2023年甘肃公交建集团清傅项目收费运营工作人员招聘笔试真题
- 普通心理学第六版PPT完整全套教学课件
- 中国烟草PPT模板
- 急性淋巴管炎的护理查房
- 江苏省综合评标专家库题库
- Java-Web程序设计任务教程全书电子教案完整版课件最全ppt整本书教学教程最新讲义
- 农作物品种试验技术规程玉米
- DBJ50∕T-348-2020 装配式混凝土建筑结构工程施工工艺标准
- 2022年《国民经济行业分类》
评论
0/150
提交评论