版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、等差数列应用题目tM怔 例题精讲【例1】 体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数。如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?【考点】等差数列应用题【难度】2星【题型】解答【解析】首项=17,末项=150,公差=7,项数=(150-17) +1=20【答案】20【例2】 一个队列按照每排 2, 4, 6, 8人的顺序可以一直排到某一排有100人,那么这个队列共有多少人?【考点】等差数列应用题【难度】2星【题型】解答【解析】(方法一)利用等差数列求和公式:通过例 1的学习可以知道,这个数列一共有50个数,再将和为102的
2、两个数配对,可配成 25对.所以 2 4 696 98 100 = ( 2+100) 25=103 25= 2550(方法二)根据 123.98 99 105050,从这个和中减去 13 5 7 . 99的和,就可得出此题的结果,这样从反面求解”的思想可以给学生灌输一下,为今后的学习作铺垫.【答案】2550【例3】 有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的第一个雕塑有3只蝴蝶,第二个雕塑有 5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有 9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方,学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?
3、由999只蝴蝶组成的雕塑是第多少个呢?【考点】等差数列应用题【难度】2星【题型】解答【解析】也就是已知一个数列:3、5、7、9、11、13、15、,求这个数列的第102项是多少?999是第几项?由刚刚推导出的公式一一第门项=首项+公差(n-1),所以,第102项=3+2(102-1) = 205;由 项数=(末项-首项尸公差十1”,999所处的项数是: (9993)2+1 =996 斗 2 +1 =498+1 =499【答案】499【巩固】有一堆粗细均匀的圆木,堆成梯形,最上面的一层有5根圆木,每向下一层增加一根,一共堆了28层.问最下面一层有多少根 ?【考点】等差数列应用题【难度】2星【题型
4、】解答【解析】将每层圆木根数写出来,依次是:5, 6, 7, 8, 9, 10 ,可以看出,这是一个等差数列,它的首项是5,公差是1,项数是28求的是第28项我们可以用通项公式直接计算.解:an =印(n 1) d=5 (28 -1) 132(根)故最下面的一层有 32根.【答案】32【巩固】建筑工地有一批砖,码成如右图形状,最上层两块砖,第2层6块砖,第3层10块砖,依次每层都比其上面一层多 4块砖,已知最下层 2106块砖,问中间一层多少块砖?这堆砖共有多少 块?【解析】项数=(2106-2)韶+1=527,因此,层数为奇数,中间项为(2+2106)吃=1054,数列和=中间项X项数=10
5、54 527=555458,所以中间一层有 1054块砖,这堆砖共有 555458块。【答案】555458【例4】一个建筑工地旁,堆着一些钢管(如图),聪明的小朋友,你能算出这堆钢管一共有多少根吗?【考点】等差数列应用题【难度】3星【题型】解答【解析】(方法一)不难发现,这堆钢管每一层都比上一层多1根,也就是从上到下每层钢管的数量构成了一个等差数列,而且首项为3,末项为10,项数为8由等差数列求和公式可以求出这堆钢管的总数量:(3/0 8“2=:52 (根)(方法二)我们可以这样假想:通过对几何图形进行旋转,从而达到配对的目的是解决问题的关 键(如图)这个槽内的钢管共有 8层,每层都有3 10
6、 =13 (根),所以槽内钢管的总数为:(3 10) 8 = 104(根).取它的一半,可知例题图中的钢管总数为:104十2 =52 (根)【答案】52【巩固】某剧院有20排座位,后一排都比前一排多 2个座位,最后一排有 70个座位,这个剧院一共有多 少个座位?【考点】等差数列应用题【难度】2星【题型】解答【解析】第一排座位数:70 -2 (20 -1)=32 (个),一共有座位:(32 70) 20“2=1020 (个).【答案】1020【巩固】一个大剧院,座位排列成的形状像是一个梯形,而且第一排有10个座位,第二排有 12个座位,第三排有14个座位,最后一排他们数了一下,一共有 210个座
7、位,思考一下,剧院中间一 排有多少个座位呢?这个剧院一共有多少个座位呢?【考点】等差数列应用题【难度】2星【题型】解答【解析】如果我们把每排的座位数依次记下来,10、12、14、16、 容易知道,是一个等差数列.210是第n (210 - 10 “ 2仁1(排,中间一排就是第(101 1) 2 =51排,那么中间一排有: 10 (51-1 2 =110 (个)座位.根据刚刚学过的中项定理,这个剧场一共有:110 101=11110(块).【答案】11110【例5】一辆双层公共汽车有 66个座位,空车出发,第一站上一位乘客,第二站上两位乘客,第三站上 三位乘客,依此类推,第几站后,车上坐满乘客?
8、【考点】等差数列应用题【难度】2星【题型】解答【解析】通过尝试可得:12 311 (1 11) 11亠2 = 66,即第11站后,车上坐满乘客.记住自然数110的和对于解一些应用题很有帮助,需要尝试求解时能够较快找到大概的数.【答案】11【例6】 时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟敲一下.问:时钟一昼夜打多少下?【考点】等差数列应用题【难度】3星【题型】解答【解析】时钟每个白天敲打的次数是每个整点敲打次数的和加上12个半点敲打的一下,即:(12 3 (I 12)12 (1 12) 12 “2 12 =78 12 =90 (下),所以一昼夜时钟一共敲打:90疋2 =180 (下
9、)【答案】180例 7】 已知:a =1 399 101, 2 4 | 98 100,则a、b两个数中,较大的数比较小的数大多少?【考点】等差数列应用题【难度】3星【题型】解答【解析】(方法一)计算: a(1 101 51-、2 =2601, b(2 100)50“2 =2550,所以 a 比 b 大,大 2601 -2550 =51 .(方法二)通过观察,a中的加数从第二个数起依次比b中的加数大1,所以a比b大,a b =1(32) +(5 4) +”)+(9998)+(101100)= 51【答案】51【例8】 小明进行加法珠算练习,用12-3| ,当加到某个数时,和是1000.在验算时发
10、现重复加了一个数,这个数是多少?【考点】等差数列应用题【难度】2星【题型】解答【关键词】第十一届,迎春杯【解析】通过尝试可以得到1 2 - | 44 (1 44) 44“ 2=990 .于是,重复计算的数是 1000 990 =10 .【答案】10【例9】 编号为1 9的9个盒子里共放有 351粒糖,已知每个盒子都比前一个盒子里多同样数量的糖.如果1号盒子里放11粒糖,那么后面的盒子比它前一个盒子里多放几粒糖?【考点】等差数列应用题【难度】3星【题型】解答【解析】根据题意,灵活运用有关等差数列的求和公式进行分析与解答.由等差数列求和公式和=(首项十末项)项数子2 ”,可得:末项=和汉2+项数首
11、项.则第9个盒子中糖果的粒数为:351 2 “9-11=67 (粒)题目所求即公差 =(67-11)+(9-1) = 56 + 8=7 (粒),则后面盒子比前一个盒子多放7粒糖.【答案】7【巩固】例题中已知如果改为 3号盒子里放了 23粒糖呢?【考点】等差数列应用题【难度】3星【题型】解答【解析】等差数列有个规律:首项末项二第2项倒数第2项 第3项倒数第3项,所以我们可以得到等差数列求和公式的一个变形,假设等差数列有n项,则和=(第a项+第n-a+1项)n “2,则倒数第3个盒子即第(9-3,1)个盒子中糖果的粒数为:351 2“ 9-23 =55 (粒)题目所求即公差 =(55-23)耳(7
12、-=32 + 4=8 (粒),则后面盒子比前一个盒子多放8粒糖.【答案】8【例10】小王和小高同时开始工作。小王第一个月得到1000元工资,以后每月多得 60元;小高第一个月得到500元工资,以后每月多得 45元。两人工作一年后,所得的工资总数相差多少元?【考点】等差数列应用题【难度】3星【题型】解答【解析】小王:1000+60X (12-1) =1660,( 1000+1660) X12吃=15960小高:500+45X (12-1) =995,(500+995) 12+2=8970,15960-8970=6990即一年后两人所得工资总数相差6990元。【答案】6990【巩固】王芳大学毕业找
13、工作。她找了两家公司,都要求签工作五年的合同,年薪开始都是一万元,但两个公司加薪的方式不同。甲公司承诺每年加薪1000元,乙公司答应每半年加薪300元。以五年计算,王芳应聘 公司工作收入更高。【考点】等差数列应用题【难度】3星【题型】解答【关键词】2007年,第5届,走美杯,3年级,决赛【解析】 甲公司五年之内王芳得到的收入为:10000 11000 12000 13000 - 14000 =60000(元).乙公司五年之内王芳得到的收入为:10000 5 300 600 900 1200川 300 9=50000 30045=63500(元).所以,王芳应聘乙公司工作收入更高.【答案】635
14、00【例11】在一次数学竞赛中,获得一等奖的八名同学的分数恰好构成等差数列,总分为656,且第一名的分数超过了 90分(满分为100分)。已知同学们的分数都是整数,那么第三名的分数是多少?【考点】等差数列应用题【难度】2星【题型】解答【解析】他们的平均分为656弋=8282+1、82+2、82+3都有可能成为第四名,相对应的,公差分别为1 X2=2、2 X2=4、3 X 2=6若第四名为82+仁83分,则第一名为83+ (4-1) X2=89分,不符合题意,舍;若第四名为82+2=84分,则第一名为 84+ (4-1)用=96分,不符合题意;若第四名为82+3=85分,则第一名为85+ (4-
15、1) X5=103分,不符合题意。因此,第四名为 84分,公差为4,所以第三名为84+4=88分【答案】88【例12】若干个同样的盒子排成一排,小明把50多个同样的棋子分装在盒中,其中只有一个盒子没有装棋子,然后他外出了,小光从每个有棋子的盒子里各拿了一个棋子放在空盒内,再把盒子重新 排了一下,小明回来后仔细查看了一下,没有发现有人动过这些盒子和棋子.共有多少个盒子?【考点】等差数列应用题【难度】3星【题型】解答【解析】这道看似蹊跷的题想要求出共有多少个盒子,必须先弄清楚小明盒子中的棋子是怎样放的.我们设除了空盒子以外一共有n个盒子小明回来查看时,原来那个空盒子现在不空了,但是小明却没有发现有
16、人动过这些盒子和棋子,那么一定是有另一个盒子现在变成了空盒子这样,原 来小明放置棋子时必有一个盒子只装着一个棋子.原来只装着一个棋子的盒子变成了空盒子以后,还需要一个盒子装一个棋子来代替它,那么这个代替它的盒子原来一定只装着2个棋子,依此类推,可以推断出小明所放的棋子依次是0, 1,2,3, n 根据这个等差数列的和等于 50多,通过尝试求出当n = 10时, 12 3 ( 0= )110 1-=满足题意,其余均不满足这样,只能是n =10,即共有11个盒子.【答案】11 【例13】某工厂12月份工作忙,星期日不休息,而且从第一天开始,每天都从总厂陆续派相同人数的工人到分厂工作,直到月底,总厂
17、还剩工人250人.如果月底统计总厂工人的工作量是9455个工作日(1人工作1天为1个工作日),且无1人缺勤那么这月由总厂派到分厂工作的工人共有 多少人.【考点】等差数列应用题【关键词】第九届,迎春杯,决赛解析】260人工作31天,工作量是【难度】3星【题型】解答260 31 =8060 (个)工作日假设每天从总厂派到分厂a个工人,第一天派去分厂的 第二天派去分厂的a个工人在总厂的工作量为a个工人在总厂的工作量为0个工作日; a个工作日;第三天派去分厂的a个工人在总厂的工作量为2a个工作日;第31天派去分厂的a个工人在总厂的工作量为 30a个工作日.从而有:9455 =0 a 2a 3a 30a
18、 80609455 -8060 =a(12 3 |l丨 30)1395 =a (1 30) 30一:一2 =465a求得a =3 那么这月由总厂派到分厂工作的工人共有3汉31 =93 (人)【答案】93【例14】右图中,每个最小的等边三角形的面积是12平方厘米,边长是1根火柴棍.如果最大的三角形共有8层,问:最大三角形的面积是多少平方厘米?整个图形由多少根火柴棍摆成?【考点】等差数列应用题【难度】3星【题型】解答层12345678小三角形柴数3691215182124【解析】最大三角形共有8层,从上往下摆时,每层的小三角形数目及所用火柴数目如下表:由上表看出,各层的小
19、三角形数成等差数列,各层的火柴数也成等差数列. 最大三角形面积为:(1 3 | 15 12(1 -15) 8- 2 12 =768(平方厘米). 火柴棍的数目为:3 6 924 =(3 24 8“2=108(根).【答案】768108 【巩固】如右图,25个同样大小的等边三角形拼成了大等边三角形,在图中每个结点处都标上一个数,使得图中每条直线上所标的数都顺次成等差数列.已知在大等边三角形的三个顶点放置的数分别【考点】等差数列应用题【题型】解答是100, 200, 300 .求所有结点上数的总和.【关键词】走美杯【解析】如下图,各结点上放置的数如图所示从100到300这条直线上的各数的平均数是2
20、00,平行于这条直线的每条直线上的各数的平均数都是200 所以 21个数的平均数是200,总和为200 21 =4200 .100120- 140140160 180/ / 八160一180200220【答案】4200【巩固】用3根等长的火柴棍摆成一个等边三角形, 角形,如果这个大的等边三角形的底边放用这样的等边三角形, 按图所示铺满一个大的等边三10根火柴,那么一共要放多少根火柴?【考点】等差数列应用题(向上的三角形2个,【解析】如果把图中最上端的一个三角形看作第一层,与第一层紧相连的三个三角形向下的三角形1个)看作第二层,那么这个图中一共有10层三角形.这10层三角形每层所需火柴数就是构成
21、上图中所有阴影三角形的边数和自上而下依次为:3,6, 9,3 10 它们成等差数列,而且首项为3,公差为3,项数为10.求火柴的总根数,就是求这个等差数列各项的和,即3 6 9 I 30 (3 30) 10“ 2 =33 5=165(根)所以,一共要放165根火柴【答案】165【例15】盒子里放有编号19的九个球,小红先后三次从盒子中取球,每次取 3个,如果从第二次起每 次取出的球的编号的和都比上一次的多9,那么他第一次取的三个球的编号为 .【考点】等差数列应用题【难度】3星【题型】解答【关键词】2007年,第5届,走美杯,3年级,初赛【解析】根据题意知道这九个小球的编号和为:12.9=45,
22、若想每次去球都比上一次的多9,则从数论角度来看本题就是将45拆三个数字和,并且三个数字和的公差为9,所以第一次取球为45 -9 -9 2亠3 =6,所以第一次去的 3个求的编号为:1、2、3.【答案】1、2、3.【例16】小明练习打算盘,他按照自然数的顺序从1开始求和,当加到某一个数的时候,和是1997,但他发现计算时少加了一个数,试问:小明少加了哪个数?【考点】等差数列应用题【难度】3星【题型】解答【解析】用x表示小明少加的那个数,1997 x = (1 n n“2 , (1 - n n =3994 2x,两个相邻的自然数的积比3994大一些,因为(1 n n和n2比较接近,可以先找 399
23、4附近的平方数,最明显的要 数3600 = 60 60 ,而后试算两个相邻自然数的乘积61 62=3782,62 63 =3906, 63 64 = 4032 ,所以n =63,正确的和是2016,少加的数为:20161997 =19 .【答案】19【例17】黑板上写有从1开始的一些连续奇数:1, 3, 5, 7, 9,擦去其中一个奇数以后,剩下的所有奇数的和是 【考点】等差数列应用题【难度】3星【关键词】2004年,走美杯【解析】1, 3, 5, 7, (2n -1),这n个奇数之和等于【答案】172008,那么擦去的奇数是.【题型】解答n2, 45 =2025 ,擦去的奇数是 2025-2
24、008 = 17 .【巩固】小明住在一条胡同里一天,他算了算这条小胡同的门牌号码他发现,除掉他自己家的不算,其余各门牌号码之和正好是100.请问这条小胡同一共有多少户(即有多少个门牌号码)?小明家的门牌号码是多少?【考点】等差数列应用题【难度】3星【题型】解答【解析】这道题目的具体数值只有一个,所以我们要通过估算的方法解决问题!我们都知道:170=55,所以和在100附近的应该为114、或115,1 214=105,小明家门牌号为 5,共有14户人家;1十2+川+14+15=120,小明家门牌号为 20,不再115的范围,所以不符合题意.【答案】共有14户人家;门牌号为 5【例18】小丸子玩投
25、放石子游戏,从 A出发走1米放1枚石子,第二次走 4米又放3枚石子,第三次走7米再放5枚石子,再走10米放7枚石子,照此规律最后走到 B处放下35枚石子.问从A到 B路程有多远?【考点】等差数列应用题【难度】3星【题型】解答【解析】先计算投放了多少次由题意依次投放石子数构成的数列是:1 , 3, 5, 7, 35.这是一个等差数列,其中首项 a1 =1,公差 d =2,末项 an = 35,那么 n = (an - a) d 1 = (35 -1) 2 T =18 ; 再看投放石子每次走的路程依次组成的数列:1,4, 7, 10,这又是一个等差数列, 其中首项 盯=1 ,公差d=3 , 项数n
26、=1 8 末项an= a,( n) 1( 1弋 1 一 3,其2和为Sn,(印) n2 ( 1 )5 2 亠1之 2米)477【答案】477【例19】如图,把边长为1的小正方形叠成 金字塔形”图,其中黑白相间染色.如果最底层有15个正方形,问其中有多少个染白色的正方形,有多少个染黑色的正方形?【考点】等差数列应用题【题型】解答【解析】由题意可知,从上到下每层的正方形个数组成等差数列,其中a1, d = 2,a. =15,所以n =(151 -2+1=8,所以,白色方格数是:1十2+3+|十8 = (1+8)汇82=36黑色方格数是:12 3 山 7 (17 7 -:- 2 = 28 .【答案】
27、2810行为止【巩固】有若干根长度相等的火柴棒,把这些火柴棒摆成如下图的图形照这样摆下去,到第 一共用了 根火柴棒.【解析】横向:1行:1 1根;2 行:1 3根;3 行:1 3 5 5 根;10 行:13 517 19 19纵向:1行:2根;2行:2 4根;3行:2 4 6根;10行:2 4 III 20根总共有(13 5 (川7 19 19 (2 4 6 川 20( 1 19 10亠 2 19 (2 20) 10“ 2 =100191 1(根).【答案】22912个时,白色三角形有【例20】如图所示,白色和黑色的三角形按顺序排列当两种三角形的数量相差个.【考点】等差数列应用题【难度】3暑4
28、题【题型】解答【关键词】2008年,第九届,中环杯,初赛【解析】根据题意可知,每个图形两种三角形的个数相差依次成数列1 , 2 , 3 , 4,排列,所以第12个图形的两种三角形的个数相差为12,这个图形的白色三角形的个数是1 2 311 =66(个).【答案】66888,但她重复【例21】木木练习口算,她按照自然数的顺序从1开始求和,当计算到某个数时,和是计算了其中一个数字问:木木重复计算了哪个数字?【考点】等差数列应用题【难度】3星【题型】解答【解析】用x表示木木多加的那个数,888 _X (1 n n-:-2 , (1 n n =1776 _2x ,两个相邻的自然数的积是比1776小一些的一个数,先找1776附近的平方数,1600=40 40,试算:40 41=1640 ,41 42=1722,42 43=1806,所以 n =41,所以x =(1776 -41 42)亠2 =27 .【答案】27【巩固】奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米已知去时用了 4天,回来时用了 3天问:学校距离百花山多少千米?【考点】等差数列应用题【难度】3星【题型】解答【解析】这道题目关键是弄清题意,发现关键是要求出第一天拉练的距离,在这里可以用方程的思想来帮助解题,可以给四年级学生一个方程的初步认识,来回的距离是相同的,通过这点来做方程求解,设第一天拉练的距离是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电力专业总监考试题及答案
- 钢管企业品牌力和生命力打造策略研究报告
- 铅泥项目可行性研究报告评审方案设计(2025年标准案例范文)
- 阀门研究报告
- 项目投融资与财务方案
- 风景园林行业分析报告2025
- 高中生物实验设计方案的常规步骤
- 高中生物趣味活动教案模板
- 高分子复合材料项目可行性研究报告参考模板-图文
- 魔芋项目可行性研究报告
- 动态图形设计课件大纲
- 湖南省长沙市望城区第一中学2025-2026学年高二上学期期中考试数学试卷
- 【253】《关于促进和规范人工智能医疗卫生应用发展的实施意见》解读学习
- 2025八年级英语上册期末真题卷
- 2024-2025学年山东省青岛市高二上学期期中考试数学检测试卷(附解析)
- JJG 693-2011可燃气体检测报警器
- 2022浙江卷高考真题读后续写+课件 【知识精讲+高效课堂】高三英语写作专项
- 非煤矿山建设项目管理办法
- 乡村治理-课件
- 探索脑2 当代神经科学课件
- 波峰焊过程确认方案
评论
0/150
提交评论