微积分大一基础知识经典讲解_第1页
微积分大一基础知识经典讲解_第2页
微积分大一基础知识经典讲解_第3页
微积分大一基础知识经典讲解_第4页
微积分大一基础知识经典讲解_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 微积分大一基础知识经典讲解 Chapter1 Functions(函数) 1.Definition 1)Afunction f is a rule that assigns to each element x in a set A exactly one element, called f(x), in a set B. 2)The set A is called the domain(定义域) of the function. 3)The range(值域) of f is the set of all possible values of f(x) as x varies through

2、 out the domain. ?)(x(x)?gNote: f2?1xf(x)?,g(x)?x?1Example )xg(x)?f x?12.Basic Elementary Functions(基本初等函数) 1) constant functions f(x)=c 2) power functions a,a?)?x0f(x 3) exponential functions x,a?0,aaf(x)?1 domain: R range: ),?(04) logarithmic functions f(x)?logx,a?0,a?1 domain: range: R ),?(0a5) t

3、rigonometric functions f(x)=sinx f(x)=cosx f(x)=tanx f(x)=cotx f(x)=secx f(x)=cscx 6) inverse trigonometric functions domain range graph 1? x (x)=arcsinor fxsin ,1?1? ?,22 1?xcos for x)=arccosx ( 11,? 0, 1?xtan or x)=arctanxf(R ? )(?,22 1?xcot xxf()=arccot or R ? )0(, 3. Definition is defined ) , th

4、e composite function( and Given two functions fg复合函数g?fby )?x)(gf(?)(fgx 2 Note )h(xx)?f(g(?(f?gh)(find each function and its domain. Example If ,2?xxandg(x)?f(x)? g)g?ffc)?fda)f?gb)g?4 )?x?f(2)xSolutiona)(f?g)(x)?f(g(x?2?2?x 2x?2or(?,:domainx x?(x)?g(x)?b)(g?2f)(x)?g(f,?0x? 40,?domain:?02?x?4 x?f(x

5、)?x?(c)(f?f)(x)?f(fx)0,?domain: x?2?2g(2?x)?g?)g)(x?g(g(x)?)d(,?02?x? 2,2?domain:?0?2?x2?using constructed 数) is elementary function(初等函4.Definition An combinations ) and composition 除乘, division减(addition加, subtraction, multiplicationstarting with basic elementary functions. 2)9x)?cos?(F(xis an ele

6、mentary function. Example 2F(x)?f(xg(h(x)(x()?gx?9(x)?cosxfx)?h sinx?1e?x(xamplefx)?logE is an elementary function. a2x1)Polynomial(多项式) Functions nn?1?axxx?a?ax?Ra(Px)? where n is a nonnegative integer. 01n?n1a?0.?The degree of the polynomial is The leading coefficient(系数n) . nIn particular(特别地), a

7、?0.?constant function The leading coefficient 0a?0.?linear function The leading coefficient 1a?0.?quadratic(The leading coefficient 二次) function 2 3 a?0.?cubic(三次) function The leading coefficient 32)Rational(有理) Functions P(x) where P and Q are polynomials. .)?0is such that(fx)? Q(x,xx Q(x)3) Root

8、Functions 4.Piecewise Defined Functions(分段函数) 1?xifx?1? ?x)Examplef(?1?xifx?5. 6.Properties(性质) 1)Symmetry(对称性) even function: in its domain. x),?)?f(xf(?xsymmetric w.r.t.(with respect to关于) the y-axis. odd function: in its domain. x?x?f(),f(?x)?symmetric about the origin. 2) monotonicity(单调性) A fun

9、ction f is called increasing on interval(区间) I if Ixx)?xin)f(x?f( 2211Iinx?x?f(x)f(x)? if It is called decreasing on I2211) 有界性3) boundedness(xbelow?xample1f(x)e boundedE xabovee bounded?fExample2(x)? below andabovefromboundedsin)(Example3fx?x ) 周期性4) periodicity ( 4 Example f(x)=sinx Chapter 2 Limi

10、ts and Continuity 1.Definition We write L?x)limf(x?aand say “f(x) approaches(tends to趋向于) L as x tends to a ” if we can make the values of f(x) arbitrarily(任意地) close to L by taking x to be sufficiently(足够地) close to a(on either side of a) but not equal to a. Note means that in finding the limit of

11、f(x) as x tends to a, we never ax?consider x=a. In fact, f(x) need not even be defined when x=a. The only thing that matters is how f is defined near a. 2.Limit Laws Suppose that c is a constant and the limitsexist. Then )(xandlimglimf(x)x?ax?a )xlimg(f(x)?)f(x?g(x)?lim1)limx?ax?ax?a )(x?x)limg)g(x)

12、?limf(f2)lim(xx?ax?ax?af(x)lim)(xfx?a 0?(x)if3)lim?limg g(x)limg(x)a?x?axx?aNote From 2), we have )(x?climflimcf(x)x?ax?ann,nis a positive)f(xlim?f(x integer.lim x?ax?a3. 1) 2) 5 Note 4.One-Sided Limits 1)left-hand limit Definition We write L?x)limf(?x?aand say “f(x) tends to L as x tends to a from

13、left ” if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to a and x less than a. 2)right-hand limit Definition We write L)?limf(x?x?aand say “f(x) tends to L as x tends to a from right ” if we can make the values of f(x) arbitrarily close to L by taking x

14、to be sufficiently close to a and x greater than a. 5.Theorem )xf(?x)?Llimlimf(x)?L?limf(?x?ax?ax?a |xlim|Example1 Findx?0Solution |x| limFindExample2 x0x?Solution 6.Infinitesimals(无穷小量) and infinities(无穷大量) limf(x)?0?We say f(x) is an infinitesimal as is 1)Definition x? ?,wherex?. some number or 22

15、x?limx0 Example1 is an infinitesimal as .?0xx?011x?.?0?lim is an infinitesimal as Example2 xx?x?limf(x)?0?limf(x)g(x)?0 and g(x) is bounded.2)Theorem ?x?x 6 Note 1 Example 0?limxsin x0x?3)Definition We say f(x) is an infinity as is ?limf(x)? ?,wherexx?some number or .?11? Example1 is an infinity as.

16、1x?lim? 1?xx?1?1x?22x?x?lim is an infinity asExample2 .?x?x4)Theorem 1f(x)?)lim?lim?0a )(xf?xx?1?lim?except possiblyat 0x)?0,f(x)?nearlimb)f( )xf(?x?x?421?23 1?24xx42xxxlim?limExample1 0? 141?3x?x?x?3 4x232?2 3?2n2n22nnlim?limExample2 ? 12313n?n?n?3 2n1?231x?2 3x?limlimxample3E ? 782x?7x8?x?x? 2xxa?

17、nifn?m? b?nnn?1a?ax?ax?01nn? Note m?limif?n0? 1m?m?bx?bx?b?x?0m?1m?ifn?m?wherea(i?0,?,n),b(j?0,?,m) are constants anda?0,b?0,m, n are 0ji0nonnegative integer. Exercises 2?bn?an2?3?a?(0),b?11.)lim(6) 1?2n?n?2?x1 )1(b1?bax?)2lim(?)1a(),? x?x 7 b?ax )?a?(2),b?3)lim(?2?2 1x?1?x2nn3?3nn1?25)?(?lim.1)2 ?lim2) 211n?n?41?4n5)(?25?n?n?11?1?41132n? n22lim)?3 14)lim(?)? 112223nnn?n?n?1? n331111 1?)?(5)lim?)n?()limn?1n6 )n(3n1?2?12?2?n?n?24x?3x ?)3.1lim 24?x2x?33x?h)(x? 2x3?lim2) hh0?213x?5x? 33)lim? 24x?3x?x?3030202032)2?(2x?3)?(3x? ?)l

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论