



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、信用评级汇总2、 信用度量制”方法(Credit Metrics)信用度量制”(CreditMetrics是由.摩根与其它合作者(美洲银行、KMV公司、瑞士 联合银行等)在已有的风险度量制”方法基础上,创立的一种专门用于对非交易 性金融资产如贷款和私募债券的价值和风险进行度量的模型。风险度量制方法(RiskMetrics)所要解决的问题是:如果明天是一个坏天气的话,我所拥有的可交易性金融资产如股票、债券和其它证券的价值将会有多大的损失”。而信用度量制方法(CreditMetrics)则是要解决这样的问题:如果下一个年度是一个坏年头 的话,我的贷款及贷款组合的价值将会遭受多大的损失呢我们在前面曾
2、谈及,由于贷款是不能够公开进行交易的,所以我们既无法观察 到贷款的市值(P),也不能够获得贷款市值的变动率(。)但是人们仍然可以通过 掌握借款企业的以下资料来解决这个问题。这些资料包括: 参见:信用度量制,技术文件,.摩根公司,纽约,1997。在1998年,开发岀“信用度量制”和“风险度量制”产品的.摩根集团又建立了一家独立的名为“风险度量制”集团的公司。 参见:An tho ny Sau nders, Credit Risk Measureme nt, Joh n Wiley & So ns, 1999,。 关于贷款组合的受险价值量计算我们将在第三节进行详细讨论。为了说明 信用度量制”方法,
3、我们来看一看怎样计算一笔贷款的受险价值量,并且讨论一下围绕着计算受险价值所涉及到的相关技术问题。一旦人们获得了这些资料,他们便可以计算出任何一项非交易性的贷款和债券 的P值和c值,从而最终可利用受险价值方法对单笔贷款或贷款组合的受险价 值量进行度量。 借款人的信用等级资料 在下一年度里该信用级别水平转换为其它信用级别的概率违约贷款的收复率 用信用度量制”方法计算单笔贷款的受险价值量的例子二、现代信用风险度量模型比较分析社会探讨2009-11-08 14:13:01阅读20评论0字号:大 中小订阅 金志博王红娟(上海师范大学 上海200234;中南财经政法大学 湖北武汉430074)【摘要】金融
4、危机的爆发以及巴塞尔新资本协议的正式实施,为银行业进行信用风险 管理提出新的挑战。本文对国际上信用风险管理实践中应用最为广泛的现代信用风险度量模 型进行了分析比较,提出我国商业银行应用信用风险模型中的问题,并给出相关建议。【关键词】 信用风险度量模型违约概率 当前,金融危机使全球经济陷入衰退,如何有效的防范金融风险是银行业面临的重大课题。巴塞尔新资本协议 于2006年正式实施,其延续了以资本充足率为核心的风险监管思路, 确立了最低资本金要求、外部监管、市场约束三大支柱原则,为商业银行建立风险管理体系 指明了方向。而对于信用风险,新巴塞尔协议要求银行建立自己的基于内部评级的信用风险 度量模型。一
5、、现代信用风险度量模型1、KMV模型1993年,KMV公司利用布莱克-斯科尔斯-默顿模型(BSM Model)提出了著名的信用监测模 型(Credit Monitor Model ),后经 Longstaff 和 Schwarz (1995)、Dsa (1995)和 Zhou( 1997) 的进一步扩展,形成了一种违约预测模型,估计借款企业违约概率的方法。KMV模型将股权视为企业资产的看涨期权,以股票的市场数据为基础,利用默顿的期权定价理论,估计企 业资产的当前市值和波动率,再根据公司的负债计算出公司的违约点,然后计算借款人的违约距离,最后根据企业的违约距离与预期违约率之间的对应关系,求出企业
6、的预期违约率。巴塞尔新资本协议中推荐使用KMV模型进行内部评级,可见其已经在国外得到了广泛的认可和使用。KMV模型的优点在于:第一,根据企业的资产市值估计信用风险波动状况, 将市场信息纳入违约概率;第二,模型是一种动态模型,可以随时根据企业股票的市价来更新模型的输入数据,反映信用风险水平的变化;第三,模型是一种“向前看”的模型,在一 定程度上克服了依赖历史数据“向后看”的数理统计模型的缺陷。KMV的缺点是:第一,无法确定是否必须使用估计技术来获得企业的资产价值、企业资产收益率的期望值和波动性等数据,估计的准确率不能确定。第二,假定利率是事先确定的,限制了将KMV模型应用于期限长的贷款(1年以上
7、)和其他利率敏感性工具。第三,隐含地假定当风险债券的到期 日趋向于零时,信用风险利差亦趋向于零,但实证研究否定这一结论。第四,使用历史数据来确定预期违约率,其隐含的假设是经济状况是静止的,此假设不合情理。2、Credit Metrics 模型Credit Metrics模型是1997年美国摩根等七家国际著名金融机构共同开发的信用风险度量模 型,被称为信用度量术。该模型是建立在资产组合理论、VaR等理论和方法基础之上,基于借款人的信用评级、次年评级发生变化的概率(评级转移矩阵)、违约贷款的回收率、债券 市场上的信用风险价差,计算出贷款的市场价值及其波动性,进而得出个别贷款和贷款组合的VaR值。它
8、不仅能够识别传统的诸如贷款、债券等投资工具的信用风险,还可以用于掉 期、互换等金融衍生工具的风险识别,因而该模型迅速成为风险管理标准模型之一。CreditMetrics模型的优点是:一是违约概念进行了拓展,认为违约也包括债务人信用等级的恶化;二是该模型的应用非常广泛,包括传统的贷款、固定收益证券、贸易融资和应收账款等商业 合同,而且其高级版还能够处理掉期合同、期货合同以及其他衍生工具;三是在对债务价值的分布有正态分布假设下解析方法和蒙特卡罗模拟法,在一定程度上避免了资产收益率正态性的硬性假设。Credit Metrics模型的缺点在于:一是大量证据表明信用等级迁移概率并不遵 循马尔可夫过程,而
9、是跨时期相关的; 二是模型中违约率直接取自历史数据平均值,但实证研究表明,违约率与宏观经济状况有直接关系,不是固定不变的;三是没有考虑市场风险。市场和经济状况的改变,如利率、股指、汇率、失业率的变化等,可能导致违约或者信用等 级的变动;四是模型通过股权回报关系来估计资产回报关系,而这可能影响估计的精确性。3、Credit Risk+模型Credit Risk+模型是瑞士银行金融产品开发部于1996年开发的信用风险管理系统,它是应用保险经济学中的保险精算方法来计算债务组合的损失分布。它是一个违约模型,把信用评级的升降看作是市场风险,在任何时期只考虑违约和不违约这两种事件状态,重点研究期望损失和非
10、期望损失。在 Credit Risk+信用风险附加计量模型中,每一笔贷款被视作小概率违约 事件,并且每笔贷款的违约概率都独立于其他贷款,这样,贷款组合违约概率的分布接近泊松分布。模型的优点:一是该模型处理能力很强,可以处理数万个不同地区、不同部门、不 同时限等不同类型的风险暴露;二是模型集中于违约分析,所需要估计变量很少,只需要违约率、违约波动率和损失的严重性;三是根据组合价值的损失分布函数可直接计算组合的预 期损失和非预期损失,比较简便。模型的缺点:一是模型对于输入因子一一单个债务人的违 约率没有详细阐述;二是忽略了信用等级变化,因而认为任意债权人的债务价值是固定不变 的;三是将风险暴露划出
11、频段并凑成整数,这影响了计算结果的精确性。4、Credit Portfolio View 模型Credit Portfolio View模型是由McKinsey公司于1998年应用计量经济学理论和蒙特卡罗模拟 法,从宏观经济环境的角度来分析债务人的信用等级迁移,开发出的一个多因素信用风险度量模型。该模型在 Credit Metrics的基础上,对周期性因素进行了处理,将评级转移矩阵与 经济增长率、失业率、利率、汇率、政府支出等宏观经济变量之间的关系模型化,并通过蒙 地卡罗模拟技术模拟周期性因素的“冲击”来测定评级转移概率的变化。模型的优点:CreditPortfolio view模型将各种影响
12、违约概率以及相关联的信用等级转换概率的宏观因素纳入了 自己的体系中,克服了Credit Metrics模型由于假定不同时期的信用等级转换概率是静态的和固定的而引起的很多偏差。模型的缺点:一是实施这一模型需要可靠的数据,而每一个国家、每一行业的违约信息往往较难获得;二是模型使用经调整后的信用等级迁移概率矩阵的特殊程序,而调整则基于银行信贷部门积累的经验和信贷周期的主观判断。二、四大模型的比较1、模型对风险的界定Credit Metrics主要是从市场盯市角度界定风险,Credit Risk+模型或KMV模型本质上是违约模式模型,Credit Portfolio View模型既可以被当作盯市模式模
13、型使用又可以当作违约模式模 型使用。2、风险来源Credit Metrics和KMV模型以Merton理论为分析基础,一家企业的资产价值和资产价值的 波动性是违约风险的关键驱动因素。在Credit Portfolio View中,驱动因素是一些宏观因素,而Credit Risk+中则是违约率及其波动性。然而,如果以多因素模型的方式来分析,四种模 型都可以看作是有相同的根源,模型中风险驱动因素和相关性在一定程度上可以被看作是与 宏观因素相联系的。3、信用事件的波动率在Credit Metrics中,违约概率和信用等级转换概率被模型化为基于历史数据的固定的或离 散的值;在KMV模型中,股票价格的变
14、化以及股票价格的波动性成为预测违约率的基础; 在Credit Portfolio View模型中,违约概率是一套呈正态分布的宏观因素和冲击的一个对数函 数;在Credit Risk+模型中,每笔贷款违约的概率被看作是可变的。4、回收率贷款等信用资产的损失分布和VaR的计算不仅仅取决于违约的概率,而且也取决于损失的严重程度或给定违约下的损失率(LGD)。在Credit Metrics模型中,估计的回收率的标准差被纳入了 VaR的计算;在KMV模型中,回收率被看作是一个常数;Credit Portfolio View模型中回收率的估计是通过蒙特卡罗模拟法进行的;在Credit Risk+模型中,损
15、失的严重程度被凑成整数并进行分组,从而得到次级的贷款组合,然后将任何次级贷款组合的损失的严重 程度视为一个常数。5、数量方法Credit Metrics模型对单项贷款的 VAR的计算可通过解析方法实现,但对大规模的贷款组合 则往往通过模拟技术求解;Credit Portfolio View模型也采用模拟技术解;Credit Risk+模型能够生成关于损失的概率密度函数的逻辑分析解;KMV模型通过解析技术实现风险评价。6、模型的适用对象Credit Metrics模型和KMV模型适用于公司和大客户信用风险的度量,Credit Risk+模型适用于银行对零售客户的信用风险度量,而Credit Po
16、rtfolio View模型适用于对宏观经济因素变化敏感的投机级债务人的信用风险度量。表1信用风险模型的关键特征比较内容信用等级转移法KMVCredit Risk+Credit MetricsCredit Portfolio View风险定义市场价值市场价值违约损失违约损失信用事件降级/违约降级/违约连续的违约率违约风险驱动因素资产价值宏观因素资产价值逾期违约率信用等级转换概率不变受宏观因素影响EDF的单个期限结构资产定价过程推断N/A信用事件标准多变量正态分布宏观因素的条件违标准多变量正态资产收益一般风险因子的条件违的相关度(权益因子模型)约概率函数率(资产因子模型)约概率函数回复率随机(分
17、布)随机(经验分布)随机(分布)违约既定下的损失数字方法模拟/分析模拟分析/模拟分析三、信用风险模型在我国应用中存在的问题及建议1、数据缺乏由于信用制度不健全、信用体系尚未建立,所以有关公司历史违约数据和规范债券评级统计 数据严重缺乏,很难把违约距离转化成实际违约率。同时,利率尚未市场化等为转移矩阵的建立以及信用价差的确定造成了困难。2、一些参数的稳定性假设问题由我国现阶段相关机制不健全,资产收益的相关度不稳定,使得信用计量模型对资产组合的 分析难以恰当反映组合风险的未来状况,使得模型对未来风险的预测能力有较大的影响。3、肥尾问题我国证券市场股价不仅波动幅度大,而且极端值出现的概率并不算小,因此资产收益的非正态性问题也即肥尾问题应该受到重视
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏安全员c1考试题库2025及答案解析
- 2025年康复医疗服务体系与康复康复服务政策研究的运营模式分析报告
- 聚焦2025:新能源品牌如何提升客户忠诚度策略报告
- 房地产建设施工组织方案范本
- 企业员工劳动合同管理与归档指南
- 某地下室钢筋混凝土分项工程施工方案1
- 2025年新能源产业技术创新与新能源产业创新模式探索报告
- 生产效率提升问题分析与解决方案模板
- 2025年辅导员招聘考试题库:学生活动策划与活动场地选择试题
- 小学体育课程教学计划及评估方案
- 院感惩罚管理制度
- 江苏省泵站技术管理办法
- 小学生科普讲堂课件-彩虹的秘密
- 心理健康和生命教育
- 进口铁矿石的报关流程
- 新苏教版一年级数学上册第一单元《练习一》教案
- 冀教版英语五年级上册单词表
- 医院感染在眼科医疗中的预防与控制
- 园区废气与噪音综合治理管理制度
- 2025华电(海西)新能源限公司面向华电系统内外公开招聘高频重点提升(共500题)附带答案详解
- 医疗器械冷链培训
评论
0/150
提交评论