(完整版)一元二次方程的解法总结,推荐文档_第1页
(完整版)一元二次方程的解法总结,推荐文档_第2页
(完整版)一元二次方程的解法总结,推荐文档_第3页
免费预览已结束,剩余9页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、一元二次方程的解法(直接开平方法、配方法、公式法和分解法)一元二次方程定义:只含有一个未知数,并且未知数的最高次数为 2 的整式方程叫做一元二次方程。一般形式:ax+bx+c=0(a,b,c 为常数,x 为未知数,且 a0)。顶点式: y=a(x-h)+k(a0,a、h、k 为常数)交点式 : y=a(x-x)(x-x) (a0)有交点 a(x,0)和 b(x,0)的抛物线,即 b-4ac0 .直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)=n(n0)的方程,其解为 x=m 配方法:1. 将此一元二次方程化为 ax+bx+c=0 的形式(此一元

2、二次方程满足有实根)2. 将二次项系数化为 13. 将常数项移到等号右侧4. 等号左右两边同时加上一次项系数一半的平方5. 将等号左边的代数式写成完全平方形式6. 左右同时开平方7. 整理即可得到原方程的根公式法:1. 化方程为一般式:ax+bx+c=0 (a0)2. 确定判别式,计算 (=b-4ac);3. 若 0,该方程在实数域内有两个不相等的实数根:x= 若 =0,该方程在实数域内有两个相等的实数根:x=x= 若 0 且 y 在对称轴右侧时,y 随 x 增大而增大,y 在对称轴左侧则相反,同增同减。当 a0 且 y 在对称轴右侧时,y 随 x 增大而减小,y 在对称轴左侧则相反,大小小大

3、。常用公式总结:;一、 根据判别式,讨论一元二次方程的根。例 1:已知关于 的方程(1) 有两个不相等的实数根, 且关于 的方程(2) 没有实数根,问 取什么整数时,方程(1) 有整数解?分析:在同时满足方程(1),(2)条件的 的取值范围中筛选符合条件的 的整数值。解:方程(1)有两个不相等的实数根,解得;方程(2)没有实数根 ,解得;于是,同时满足方程(1),(2)条件的 的取值范围是 其中, 的整数值有或当时,方程(1)为,无整数根;当时,方程(1)为,有整数根。解得: 所以,使方程(1)有整数根的 的整数值是。说明:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定 的取值范围,

4、并依靠熟练的解不等式的基本技能和一定的逻辑推理,从而筛选出,这也正是解答本题的基本技巧。二、判别一元二次方程两根的符号。例 1:不解方程,判别方程 两根的符号。分析:对于 来说,往往二次项系数,一次项系数,常数项皆为已知,可据此求出根的判别式,但只能用于判定根的存在与否,若判定根的正负,则需要确定或 的正负情况。因此解答此题的关键是:既要求出判别式的值,又要确定或 的正负情况。解: , 42(7)650方程有两个不相等的实数根。设方程的两个根为 , 0原方程有两个异号的实数根。说明:判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,另外由于本题中 0,所以可判定方程的根为

5、一正一负;倘若0,仍需考虑 的正负,方可判别方程是两个正根还是两个负根。三、已知一元二次方程的一个根,求出另一个根以及字母系数的值。例 2:已知方程 的一个根为 2,求另一个根及 的值。分析:此题通常有两种解法:一是根据方程根的定义,把代入原方程,先求出的值,再通过解方程办法求出另一个根;二是利用一元二次方程的根与系数的关系求出另一个根及 的值。解法一:把代入原方程,得: 即 , 解得当时,原方程均可化为: ,解得: 方程的另一个根为 4,的值为 3 或1。解法二:设方程的另一个根为 , 根据题意,利用韦达定理得: ,把代入,可得:把 代入,可得:,即解得方程 的另一个根为 4, 的值为 3

6、或1。说明:比较起来,解法二应用了韦达定理,解答起来较为简单。例 3:已知方程 有两个实数根,且两个根的平方和比两根的积大 21,求 的值。分析:本题若利用转化的思想,将等量关系“两个根的平方和比两根的积大 21”转化为关于 的方程,即可求得 的值。解:方程有两个实数根, ,解得 0设方程两根为;则 , 整理得: 解得: 又,说明:当求出 后,还需注意隐含条件,应舍去不合题意的。 四、运用判别式及根与系数的关系解题。例 5:已知 、是关于 的一元二次方程的两个非零实数根,问 和 能否同号?若能同号,请求出相应的 的取值范围;若不能同号,请说明理由,解:因为关于 的一元二次方程有两个非零实数根,

7、则有 又 、是方程的两个实数根,所以由一元二次方程根与系数的关系,可得:假设 、同号,则有两种可能: (1) (2) 若, 则有:;即有: ,解不等式组得 时方程才有实树根,此种情况不成立。若 , 则有:;即有:,解不等式组,得;又 ,当时,两根能同号说明:一元二次方程根与系数的关系深刻揭示了一元二次方程中根与系数的内在联系, 是分析研究有关一元二次方程根的问题的重要工具,也是计算有关一元二次方程根的计算问题的重要工具。知识的运用方法灵活多样,是设计考察创新能力试题的良好载体,在中考中与此有联系的试题出现频率很高,应是同学们重点练习的内容。六、运用一元二次方程根的意义及根与系数的关系解题。例:

8、已知 、 是方程的两个实数根,求 的值。分析:本题可充分运用根的意义和根与系数的关系解题,应摒弃常规的求根后,再带入的方法,力求简解。解法一:由于 是方程的实数根,所以 设 , 与 相加,得:)(变形目的是构造和)根据根与系数的关系,有:,得: =0解法二:由于 、 是方程 的实数根, 说明:既要熟悉问题的常规解法,也要随时想到特殊的简捷解法,是解题能力提高的重要标志,是努力的方向。有关一元二次方程根的计算问题,当根是无理数时,运算将十分繁琐,这时,如果方程的系数是有理数,利用根与系数的关系解题可起到化难为易、化繁为简的作用。这类问题在解法上灵活多变,式子的变形具有创造性,重在考查能力,多年来

9、一直受到命题老师的青睐。七、运用一元二次方程根的意义及判别式解题。例 8:已知两方程和 至少有一个相同的实数根,求这两个方程的四个实数根的乘积。分析:当设两方程的相同根为 时,根据根的意义,可以构成关于 和 的二元方程组,得解后再由根与系数的关系求值。解:设两方程的相同根为 , 根据根的意义,有和 两式相减,得当时, ,方程的判别式 方程无实数解当时, 有实数解 代入原方程,得,所以于是,两方程至少有一个相同的实数根,4 个实数根的相乘积为说明:(1)本题的易错点为忽略对的讨论和判别式的作用,常常除了犯有默认 的错误,甚至还会得出并不存在的解:当时, ,两方程相同,方程的另一根也相同,所以 4

10、 个根的相乘积为: ;(2) 既然本题是讨论一元二次方程的实根问题,就应首先确定方程有实根的条件:且另外还应注意:求得的 的值必须满足这两个不等式才有意义。一、填空题:1、如果关于 的方程的两根之差为 2,那么。2、已知关于 的一元二次方程 两根互为倒数,则。3、已知关于 的方程的两根为,且 ,则。4、已知 是方程的两个根,那么:; ;。5、已知关于 的一元二次方程的两根为 和 ,且 , 则; 。6、如果关于 的一元二次方程 的一个根是 ,那么另一个根是 , 的值为 。7、已知 是 的一根,则另一根为 , 的值为 。8、一个一元二次方程的两个根是 和 ,那么这个一元二次方程为: 。二、求值题:

11、1、已知 是方程的两个根,利用根与系数的关系,求的值。2、已知 是方程的两个根,利用根与系数的关系,求的值。3、已知 是方程的两个根,利用根与系数的关系,求的值。4、已知两数的和等于 6,这两数的积是 4,求这两数。5、已知关于 x 的方程 的两根满足关系式 ,求 的值及方程的两个根。6、已知方程和 有一个相同的根,求 的值及这个相同的根。三、能力提升题:1、实数 在什么范围取值时,方程有正的实数根?2、已知关于 的一元二次方程 (1) 求证:无论 取什么实数值,这个方程总有两个不相等的实数根。(2) 若这个方程的两个实数根 、满足 ,求 的值。3、若,关于 的方程 有两个相等的正的实数根,求

12、 的值。4、是否存在实数 ,使关于 的方程 的两个实根,满足 ,如果存在,试求出所有满足条件的 的值,如果不存在,请说明理由。5、已知关于 的一元二次方程()的两实数根为,若,求 的值。6、实数 、 分别满足方程和,求代数式 的值。“”“”at the end, xiao bian gives you a passage. minand once said, people who learn to learn are very happy people. in every wonderful life, learning is an eternal theme. as a profession

13、al clerical and teaching position, i understand the importance of continuous learning, life is diligent, nothing can be gained, only continuous learning can achieve better self. only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of ente

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论