![2020版一轮创新思维文数(人教版A版)课件:第三章第五节两角和与差的正弦、余弦和正切公式.ppt[文字可编辑]_第1页](http://file2.renrendoc.com/fileroot_temp3/2021-3/4/13b6ec60-0ece-4c4d-a63a-c1e007c2eb01/13b6ec60-0ece-4c4d-a63a-c1e007c2eb011.gif)
![2020版一轮创新思维文数(人教版A版)课件:第三章第五节两角和与差的正弦、余弦和正切公式.ppt[文字可编辑]_第2页](http://file2.renrendoc.com/fileroot_temp3/2021-3/4/13b6ec60-0ece-4c4d-a63a-c1e007c2eb01/13b6ec60-0ece-4c4d-a63a-c1e007c2eb012.gif)
![2020版一轮创新思维文数(人教版A版)课件:第三章第五节两角和与差的正弦、余弦和正切公式.ppt[文字可编辑]_第3页](http://file2.renrendoc.com/fileroot_temp3/2021-3/4/13b6ec60-0ece-4c4d-a63a-c1e007c2eb01/13b6ec60-0ece-4c4d-a63a-c1e007c2eb013.gif)
![2020版一轮创新思维文数(人教版A版)课件:第三章第五节两角和与差的正弦、余弦和正切公式.ppt[文字可编辑]_第4页](http://file2.renrendoc.com/fileroot_temp3/2021-3/4/13b6ec60-0ece-4c4d-a63a-c1e007c2eb01/13b6ec60-0ece-4c4d-a63a-c1e007c2eb014.gif)
![2020版一轮创新思维文数(人教版A版)课件:第三章第五节两角和与差的正弦、余弦和正切公式.ppt[文字可编辑]_第5页](http://file2.renrendoc.com/fileroot_temp3/2021-3/4/13b6ec60-0ece-4c4d-a63a-c1e007c2eb01/13b6ec60-0ece-4c4d-a63a-c1e007c2eb015.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第三章,三角函数、解三角形,考纲解读,1,直接正用公式求值,2,逆用公式化,简求值,3,利用公式求角,第三章,第五节,两角和与差的正弦、余弦和正切公式,回顾教材夯实基础,典例剖析突破考点,真题感悟体验考场,课时规范练,基础梳理,1,两角和与差的正弦、余弦、正切公式,1)S,sin,sin,cos,cos,sin,2)S,sin,sin,cos,cos,sin,3)C,cos,cos,cos,sin,sin,4)C,cos,cos,cos,sin,sin,tan,tan,1,tan,tan,5)T,tan,tan,tan,1,tan,tan,6)T,tan,第三章,第五节,两角和与差的正弦、余弦
2、和正切公式,回顾教材夯实基础,典例剖析突破考点,真题感悟体验考场,课时规范练,2,倍角公式,1)S,2,sin 2,2sin,cos,cos,2)C,2,cos 2,sin,2cos,1,2,2,2,2,1,2sin,2tan,2,1,tan,3)T,2,tan 2,第三章,第五节,两角和与差的正弦、余弦和正切公式,回顾教材夯实基础,典例剖析突破考点,真题感悟体验考场,课时规范练,3,降幂公式,1,cos 2,2,1)cos,2,1,cos 2,2,2,2)sin,第三章,第五节,两角和与差的正弦、余弦和正切公式,回顾教材夯实基础,典例剖析突破考点,真题感悟体验考场,课时规范练,三基自测,1,
3、已知,5,15,sin,3,2,6,则,17,sin,的值为,D,15,3,8,8,A,B,17,34,15,8,3,C,34,15,8,3,D,34,第三章,第五节,两角和与差的正弦、余弦和正切公式,回顾教材夯实基础,典例剖析突破考点,真题感悟体验考场,课时规范练,2,化简,cos 15,cos 45,cos 75,sin 45,的值为,A,1,A,2,1,C,2,3,B,2,3,D,2,第三章,第五节,两角和与差的正弦、余弦和正切公式,回顾教材夯实基础,典例剖析突破考点,真题感悟体验考场,课时规范练,3,3,若,是第二象限角,且,sin,则,tan 2,B,5,24,A,7,7,C,24,
4、24,B,7,7,D,24,第三章,第五节,两角和与差的正弦、余弦和正切公式,回顾教材夯实基础,典例剖析突破考点,真题感悟体验考场,课时规范练,5,5,tan,tan,4,12,3,4,必修,4,习题,3.1A,组改编,_,5,1,tan,12,5,2017,高考全国卷改编,若,3,5,cos 2,_,0,2,cos,5,则,5,第三章,考点一,第五节,两角和与差的正弦、余弦和正切公式,回顾教材夯实基础,考点二,典例剖析突破考点,考点三,真题感悟体验考场,课时规范练,给角求值,方法突破,23,2,例,1,1)cos,cos,cos,9,9,9,1,1,A,B,8,16,1,C,16,1,D,8
5、,2cos 10,2,tan 20,_,sin 70,解析,答案,第三章,考点一,第五节,两角和与差的正弦、余弦和正切公式,回顾教材夯实基础,考点二,典例剖析突破考点,考点三,真题感悟体验考场,课时规范练,23,2,1)cos,cos,cos,9,cos 20,cos 40,cos 100,9,9,cos,20,cos 40,cos 80,sin 20,cos 20,cos 40,cos 80,sin 20,1,1,sin 40,cos 40,cos 80,sin 80,cos 80,2,4,sin 20,sin 20,1,1,sin 160,sin 20,8,8,1,sin 20,sin 2
6、0,8,解析,答案,第三章,考点一,第五节,两角和与差的正弦、余弦和正切公式,回顾教材夯实基础,考点二,典例剖析突破考点,考点三,真题感悟体验考场,课时规范练,2cos 10,2cos 10,sin 20,2,tan 20,sin 70,cos 20,cos 20,2cos,30,20,sin 20,cos 20,2,3,1,sin 20,cos 20,sin 20,2,2,3,cos 20,答案,1)A,2,3,解析,答案,第三章,考点一,第五节,两角和与差的正弦、余弦和正切公式,回顾教材夯实基础,考点二,典例剖析突破考点,考点三,真题感悟体验考场,课时规范练,方法提升,对于给角求值问题,往
7、往所给角都是非特殊角,解决这类问,题的基本思路有,1,化为特殊角的三角函数值,2,化为正、负相消的项,消去求值,3,化分子、分母出现公约数进行约分求值,第三章,考点一,第五节,两角和与差的正弦、余弦和正切公式,回顾教材夯实基础,考点二,典例剖析突破考点,考点三,真题感悟体验考场,课时规范练,跟踪训练,cos 40,1,化简,C,cos 25,1,sin 40,A,1,C,2,2,B,3,D,2,2,cos,20,sin,20,原式,cos 25,cos 20,sin,20,cos 20,sin 20,2cos 25,2,故选,C,cos 25,cos 25,解析,答案,第三章,考点一,第五节,
8、两角和与差的正弦、余弦和正切公式,回顾教材夯实基础,考点二,典例剖析突破考点,考点三,真题感悟体验考场,课时规范练,2,1,tan 18,(1,tan 27,的值是,C,A,3,C,2,B,1,2,D,2(tan 18,tan 27,1,tan 18,(1,tan 27,1,tan 18,tan 27,tan 18,tan 27,1,tan 45,1,tan,18,tan 27,tan 18,tan 27,2,解析,答案,第三章,考点一,第五节,两角和与差的正弦、余弦和正切公式,回顾教材夯实基础,考点二,典例剖析突破考点,考点三,真题感悟体验考场,课时规范练,给值求值,思维突破,例,2,1)(
9、2018,贵阳监测,若,2,sin,4,则,5,sin 2,等于,8,8,A,B,25,25,17,C,25,17,D,25,sin 2,2,若,tan,3,则,1,cos 2,A,3,3,C,3,B,3,3,D,3,解析,答案,第三章,考点一,第五节,两角和与差的正弦、余弦和正切公式,回顾教材夯实基础,考点二,典例剖析突破考点,考点三,真题感悟体验考场,课时规范练,2,1,3,已知,tan,tan,则,tan,的值为,5,3,_,解析,答案,第三章,考点一,第五节,两角和与差的正弦、余弦和正切公式,回顾教材夯实基础,考点二,典例剖析突破考点,考点三,真题感悟体验考场,课时规范练,2,2,17
10、,2,1)sin 2,cos,2,2,2 sin,4,1,2,5,1,25,sin 2,2sin,cos,2,tan,3,2,1,cos 2,1,2cos,1,2,1,3,tan,tan,tan,tan,5,3,2,1,tan,tan,tan,tan,5,3,1,tan,2,1,17,1,tan,tan,1,tan,tan,1,5,3,7,1,1,答案,1)C,2)A,3,26,17,3,7,1,1,26,1,解析,答案,17,3,第三章,考点一,第五节,两角和与差的正弦、余弦和正切公式,回顾教材夯实基础,考点二,典例剖析突破考点,考点三,真题感悟体验考场,课时规范练,思维升华,观察角进行角度
11、间的变换,1,已知角为两个时,待求角一般表示为已知角的和或差,2,已知角为一个时,待求角一般与已知角成,倍,的关系或,互余互补,的关系,第三章,考点一,第五节,两角和与差的正弦、余弦和正切公式,回顾教材夯实基础,考点二,典例剖析突破考点,考点三,真题感悟体验考场,课时规范练,3,在求值的过程中,拼凑角,对求值往往起到,峰回路,转,的效果通过适当地拆角、凑角来利用所给,条件,常见的变角技巧有,2,2,2,4,15,45,30,等,4,2,第三章,考点一,第五节,两角和与差的正弦、余弦和正切公式,回顾教材夯实基础,考点二,典例剖析突破考点,考点三,真题感悟体验考场,课时规范练,母题变式,2,2,1
12、,若将本例,1,变为已知,sin 2,则,cos,4,3,1,A,6,1,C,2,1,B,3,2,D,3,解析,答案,第三章,考点一,第五节,两角和与差的正弦、余弦和正切公式,回顾教材夯实基础,考点二,典例剖析突破考点,考点三,真题感悟体验考场,课时规范练,2,cos,4,1,cos,2,2,2,2,1,1,sin 2,3,1,2,2,6,答案,A,解析,答案,第三章,考点一,第五节,两角和与差的正弦、余弦和正切公式,回顾教材夯实基础,考点二,典例剖析突破考点,考点三,真题感悟体验考场,课时规范练,2,若本例,3,条件不变,试求,tan(2,的值,2,1,1,由,tan,tan,求出,tan,
13、后,5,3,17,tan(2,tan,1,2,tan,tan,17,5,39,1,2,83,1,tan,tan,1,17,5,解析,第三章,考点一,第五节,两角和与差的正弦、余弦和正切公式,回顾教材夯实基础,考点二,典例剖析突破考点,考点三,真题感悟体验考场,课时规范练,给值求角,模型突破,5,10,例,3,1)(2018,成都检测,若,sin,2,sin,且,5,10,3,则,2,4,的值是,9,B,4,5,9,D,或,4,4,7,A,4,5,7,C,或,4,4,1,1,2,已知,0,且,tan,tan,则,2,_,2,7,解析,答案,第三章,考点一,第五节,两角和与差的正弦、余弦和正切公式
14、,回顾教材夯实基础,考点二,典例剖析突破考点,考点三,真题感悟体验考场,课时规范练,1,因为,4,所以,2,2,2,又,5,sin 2,所以,5,2,2,4,2,故,3,2,5,cos 2,又,2,5,所以,5,2,4,故,3,10,cos,因此,cos,10,cos,2,cos,cos,2,sin,sin,2,3,10,2,5,10,5,5,5,10,5,2,又,4,2,所,10,5,2,7,以,故选,A,4,解析,答案,第三章,考点一,第五节,两角和与差的正弦、余弦和正切公式,回顾教材夯实基础,考点二,典例剖析突破考点,考点三,真题感悟体验考场,课时规范练,1,1,tan,tan,2,7,
15、1,2,tan,tan,0,1,1,3,1,tan,tan,1,2,7,1,2,3,2tan,3,0,又,tan,2,0,02,2,4,2,1,2,4,1,tan,1,3,3,1,tan 2,tan,4,7,1,tan(2,1,tan,0,3,1,7,2,1,tan 2,tan,1,4,7,3,3,2,0,2,4,答案,1)A,2,4,解析,答案,第三章,考点一,第五节,两角和与差的正弦、余弦和正切公式,回顾教材夯实基础,考点二,典例剖析突破考点,考点三,真题感悟体验考场,课时规范练,模型解法,根据三角函数值,求角主要是求三角函数值和判断角的范,围,其关键点为,1,求该角的某个三角函数值,已知
16、正切函数值,选正切函数,第三章,考点一,第五节,两角和与差的正弦、余弦和正切公式,回顾教材夯实基础,考点二,典例剖析突破考点,考点三,真题感悟体验考场,课时规范练,已知正、余弦函数值,选正弦或余弦函数若角的范围是,0,选正、余弦皆可;若角的范围是,0,选余弦较,2,好;若角的范围为,2,2,选正弦较好,2,判断角的范围,根据函数值和已知条件中角度范围,得出,角的更精准的范围,3,借助三角函数图象得出角度,第三章,考点一,第五节,两角和与差的正弦、余弦和正切公式,回顾教材夯实基础,考点二,典例剖析突破考点,考点三,真题感悟体验考场,课时规范练,高考类题,2014,高考新课标全国卷,设,1,sin
17、,则,cos,A,3,2,C,3,2,B,2,2,D,2,2,解析,答案,0,2,0,2,且,tan,第三章,考点一,第五节,两角和与差的正弦、余弦和正切公式,回顾教材夯实基础,考点二,典例剖析突破考点,考点三,真题感悟体验考场,课时规范练,1,sin,sin,1,sin,由,tan,得,即,sin,cos,cos,cos,cos,cos,sin,cos,所以,sin,cos,又,所以,sin,sin,2,又因为,cos,sin,2,0,2,0,2,所以,0,因此,所以,2,2,2,2,2,2,故选,B,2,答案,B,解析,答案,第三章,第五节,两角和与差的正弦、余弦和正切公式,回顾教材夯实基
18、础,典例剖析突破考点,真题感悟体验考场,课时规范练,3,1,考点二,2017,高考山东卷,已知,cos,x,则,cos 2,x,D,4,1,1,A,B,4,4,1,C,8,1,D,8,2,cos 2,x,2cos,故选,D,3,1,2,x,1,2,4,1,8,解析,答案,第三章,第五节,两角和与差的正弦、余弦和正切公式,回顾教材夯实基础,典例剖析突破考点,真题感悟体验考场,课时规范练,2,考点一,2015,高考全国卷,sin,20,cos,10,cos,160,sin,10,D,3,A,2,1,C,2,3,B,2,1,D,2,sin 20,cos 10,cos 160,sin 10,sin 2
19、0,cos 10,cos 20,sin,1,10,sin(20,10,sin 30,故选,D,2,解析,答案,第三章,第五节,两角和与差的正弦、余弦和正切公式,回顾教材夯实基础,典例剖析突破考点,真题感悟体验考场,课时规范练,3,3,考点二,2016,高考全国卷,若,cos,则,sin 2,4,5,7,A,25,1,C,5,1,B,5,7,D,25,解析,答案,第三章,第五节,两角和与差的正弦、余弦和正切公式,回顾教材夯实基础,典例剖析突破考点,真题感悟体验考场,课时规范练,2,因为,cos,cos,cos,sin,sin,sin,cos,4,4,4,2,3,3,2,18,所以,sin,cos,所以,1,sin 2,所以,sin,5,5,25,7,2,故选,D,25,答案,D,解析,答案,第三章,第五节,两角和与差的正弦、余弦和正切公式,回顾教材夯实基础,典例剖析突破考点,真题感悟体验考场,课时规范练,1,4,考点二,2016,高考全国卷,若,tan,则,cos,2,3,4,A,5,1,C,5,1,B,5,4,D,5,解析,答案,第三章,第五
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024成都信息工程大学辅导员招聘笔试真题
- 2025年加脂剂项目发展计划
- 2024年合阳县社区工作者招聘真题
- 2025秋统编版(2024)道德与法治一年级上册第一单元《4平平安安回家来》教学设计
- 2024年广西壮族自治区农业农村厅下属事业单位真题
- 2025年事业单位招聘考试公共基础知识仿真模拟考试试卷(四套)【答案】
- 2025年三明市三元区沪明小学招聘校聘教师考试试题【答案】
- 消防应急预案(15篇)
- 湘艺版二年级音乐下册《月圆曲》教案
- 2025年工程项目管理服务项目建议书
- 酒店服务流程与空间布局优化
- (2025)医疗护理员理论考试试题含答案
- 2025年广西中考语文试题卷(含答案)
- 建设工程法律培训
- 2025年南京市中考数学真题试卷
- 2025年呼伦贝尔农垦集团有限公司招聘笔试参考题库含答案解析
- 2025年重庆市中考数学试卷真题(含标准答案)
- 2024广西专业技术人员继续教育公需科目参考答案(97分)
- 湘少版小学全部英语单词
- 人教版九年级数学上册教材解读分析精编ppt
- 电子秤cal标定方法
评论
0/150
提交评论