




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 人教版高中数学排 案教合组列精品文档 排列与组合 一、教学目标 1、知识传授目标:正确理解和掌握加法原理和乘法原理 2、能力培养目标:能准确地应用它们分析和解决一些简单的问题 3、思想教育目标:发展学生的思维能力,培养学生分析问题和解决问题的能力 二、教材分析 1.重点:加法原理,乘法原理。 解决方法:利用简单的举例得到一般的结论 2.难点:加法原理,乘法原理的区分。解决方法:运用对比的方法比较它们的异同 三、活动设计 1.活动:思考,讨论,对比,练习 2.教具:多媒体课件 四、教学过程正 1新课导入 随着社会发展,先进技术,使得各种问题解决方法多样化,高标准严要求,使得商品生产工序复杂化,
2、解决一件事常常有多种方法完成,或几个过程才能完成。 排列组合这一章都是讨论简单的计数问题,而排列、组合的基础就是基本原理,用好基本原理是排列组合的关键 收集于网络,如有侵权请联系管理员删除精品文档 2新课 我们先看下面两个问题 (l)从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船一天中,火车有4班,汽车有 2班,轮船有 3班,问一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法? 板书:图 因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每一种走法都可以从甲地到达乙地,因此,一天中乘坐这些交通工具从甲地到乙地共有 4十2十3=9种不同的走法 一般地,有如下原理: 加法
3、原理:做一件事,完成它可以有n类办法,在第一类办种不同的方法,在第二类办法中有m种不同的方m法中有21种不同的方法那么完成这件事共m类办法中有法,在第nn十m十十m种不同的方法 m有Nn12(2) 我们再看下面的问题: 由A村去B村的道路有3条,由B村去C村的道路有2条从A村经B村去C村,共有多少种不同的走法? 板书:图 收集于网络,如有侵权请联系管理员删除精品文档 这里,从A村到B村有3种不同的走法,按这3种走法中的每一种走法到达B村后,再从B村到C村又有2种不同的走法因此,从A村经B村去C村共有 3X2=6种不同的走法 一般地,有如下原理: 乘法原理:做一件事,完成它需要分成n个步骤,做第
4、一步有m种不同的方法,做第二步有m种不同的方法,做第n步有mn12 mm种不同的方法 m种不同的方法那么完成这件事共有Nn21 例1 书架上层放有6本不同的数学书,下层放有5本不同的语文书 1)从中任取一本,有多少种不同的取法? 2)从中任取数学书与语文书各一本,有多少的取法? 解:(1)从书架上任取一本书,有两类办法:第一类办法是从上层取数学书,可以从6本书中任取一本,有6种方法;第二类办法是从下层取语文书,可以从5本书中任取一本,有5种方法根据加法原理,得到不同的取法的种数是6十5=11 答:从书架L任取一本书,有11种不同的取法 (2)从书架上任取数学书与语文书各一本,可以分成两个步骤完
5、成:第一步取一本数学书,有6种方法;第二步取一本语文书,有5种方法根据乘法原理,得到不同的取法的种数是 N6X530 答:从书架上取数学书与语文书各一本,有30种不同的方法 练习: 一同学有4枚明朝不同古币和6枚清朝不同古币 收集于网络,如有侵权请联系管理员删除精品文档 1)从中任取一枚,有多少种不同取法? 2)从中任取明清古币各一枚,有多少种不同取法? 例2:(1)由数字l,2,3,4,5可以组成多少个数字允许重复三位数? (2)由数字l,2,3,4,5可以组成多少个数字不允许重复三位数? (3)由数字0,l,2,3,4,5可以组成多少个数字不允许重复三位数? 解:要组成一个三位数可以分成三
6、个步骤完成:第一步确定百位上的数字,从5个数字中任选一个数字,共有5种选法;第二步确定十位上的数字,由于数字允许重复, 这仍有5种选法,第三步确定个位上的数字,同理,它也有5种选法根据乘法原理,得到可以组成的三位数的个数是N=5X5X5=125 答:可以组成125个三位数 练习: 1、从甲地到乙地有2条陆路可走,从乙地到丙地有3条陆路可走,又从甲地不经过乙地到丙地有2条水路可走 (1)从甲地经乙地到丙地有多少种不同的走法? (2)从甲地到丙地共有多少种不同的走法? 收集于网络,如有侵权请联系管理员删除精品文档 2一名儿童做加法游戏在一个红口袋中装着2O张分别标有数1、2、19、20的红卡片,从
7、中任抽一张,把上面的数作为被加数;在另一个黄口袋中装着10张分别标有数1、2、9、1O的黄卡片,从中任抽一张,把上面的数作为加数这名儿童一共可以列出多少个加法式子? 3题2的变形 4由09这10个数字可以组成多少个没有重复数字的三位数? 小结:要解决某个此类问题,首先要判断是分类,还是分步?分类时用加法,分步时用乘法 其次要注意怎样分类和分步,以后会进一步学习 练习 1(口答)一件工作可以用两种方法完成有 5人会用第一种方法完成,另有4人会用第二种方法完成选出一个人来完成这件工作,共有多少种选法? 2在读书活动中,一个学生要从 2本科技书、 2本政治书、 3本文艺书里任选一本,共有多少种不同的
8、选法? 3乘积(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5)展开后共有多少项? 4从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通,从丁地到丙地有2条路可通从甲地到丙地共有多少种不同的走法? 收集于网络,如有侵权请联系管理员删除精品文档 5一个口袋内装有5个小球,另一个口袋内装有4个小球,所有这些小球的颜色互不相同 (1)从两个口袋内任取一个小球,有多少种不同的取法? (2)从两个口袋内各取一个小球,有多少种不同的取法? 作业: 排列 【复习基本原理】 1.加法原理 做一件事,完成它可以有n类办法,第一类办法中有m种不同的方法,第二办
9、法中有m种不同的方法,第n办21法中有m种不同的方法,那么完成这件事共有 nN=m+m+m+m n231 种不同的方法. 2.乘法原理 做一件事,完成它需要分成n个步骤,做第一 步有m种不同的方法,做第二步有m种不同的方法,做第n21步有m种不同的方法,.那么完成这件事共有 n N=m?m?m?m n123 种不同的方法. 3.两个原理的区别: 【练习1】 1.北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同的机票? 收集于网络,如有侵权请联系管理员删除精品文档 2.由数字1、2、3可以组成多少个无重复数字的二位数?请一一列出. 【基本概念】 1. 什么叫排列?从n个不同元素中,任
10、取m()个元素n?m一定的顺序排成一列,叫做从(这里的被取元素各不相同)按照n 一个排列个元素的m个不同元素中取出 2. 什么叫不同的排列?元素和顺序至少有一个不同. 什么叫相同的排列?元素和顺序都相同的排列. 3. 什么叫一个排列? 4.【例题与练习】 1. 由数字1、2、3、4可以组成多少个无重复数字的三位 数?个元素的所有四个元素,写出每次取出已知2.a、b、c、d3. 排列;写出每次取出4个元素的所有排列 【排列数】个元素的所有)个不同元素中,任取m(1. 定义:从nn?m表示. m元素的排列数,用符号个元素中取出排列的个数叫做从nmpn用符号表示上述各题中的排列数. 2. 排列数公式
11、:=n(n-1)(n-2)(n-m+1) mpn ; ; ;321p?pp?nnn ; 4?pn 收集于网络,如有侵权请联系管理员删除精品文档 = ; = ;计算:42pp55 = ; 2p15 【课后检测】 1. 写出: 从五个元素a、b、c、d 、e中任意取出两个、三个元素的所有排列; 由1、2、3、4组成的无重复数字的所有3位数. 由0、1、 2、3组成的无重复数字的所有3位数. 计算:2. 8p 42 3312p2p?pp 8861007p12排 列 课题:排列的简单应用(1) 目的:进一步掌握排列、排列数的概念以及排列数的两个计算公式,会用排列数公式计算和解决简单的实际问题 过程:
12、一、复习:(引导学生对上节课所学知识进行复习整理) 1排列的定义,理解排列定义需要注意的几点问题; 2排列数的定义,排列数的计算公式 n! (其中mn m,n或?Z) mm?A)1mn()?)(?(?Ann1n2? nn(n?m)! 3全排列、阶乘的意义;规定 0!=1 4“分类”、“分步”思想在排列问题中的应用 收集于网络,如有侵权请联系管理员删除精品文档 二、新授: 例1: 7位同学站成一排,共有多少种不同的排法? 解:问题可以看作:7个元素的全排列5040 7A7 7位同学站成两排(前3后4),共有多少种不同的排法? 解:根据分步计数原理:76543217!5040 7位同学站成一排,其
13、中甲站在中间的位置,共有多少种不同的排法? 解:问题可以看作:余下的6个元素的全排列=720 6A6 7位同学站成一排,甲、乙只能站在两端的排法共有多少种? 解:根据分步计数原理:第一步 甲、乙站在两端有种;第二2A2种 则共有=240种排列方法 名同学进行全排列有余下的5步 552AAA552 7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种? 解法一(直接法):第一步 从(除去甲、乙)其余的5位同种方法;第二步 从余下的5位位同学站在排头和排尾有学中选22A5种方法 所以一共有位进行排列(全排列)有同学中选5525AAA5552400种排列方法 种方法;若乙站在排6解法二:(排除
14、法)若甲站在排头有 A6种方法;若甲站在排头且乙站在排尾则有种方法所以甲56尾有AA56=2400种 657不能站在排头,乙不能排在排尾的排法共有A2AA657 收集于网络,如有侵权请联系管理员删除精品文档 小结一:对于“在”与“不在”的问题,常常使用“直接法”或“排除法”,对某些特殊元素可以优先考虑 例2 : 7位同学站成一排 甲、乙两同学必须相邻的排法共有多少种? 解:先将甲、乙两位同学“捆绑”在一起看成一个元素与其余的5种方法;再将甲、乙两个同学个元素(同学)一起进行全排列有6A6种方法所以这样的排法一共有1440 “松绑”进行排列有622AAA622甲、乙和丙三个同学都相邻的排法共有多
15、少种? 解:方法同上,一共有720种 35AA35甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种? 解法一:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的5种方法;将剩下的4个元素放在排头和排尾,有个元素中选取22A5种方法;最后将甲、乙两个同学“松绑”进行4个元素进行全排列有A4种方法所以这样的排法一共有960种方法 排列有2242AAAA5242解法二:将甲、乙两同学“捆绑”在一起看成一个元素,此时一种方法,所以丙不能站2个元素,若丙站在排头或排尾有共有65A5种方法 256在排头和排尾的排法有?AAA?960)(22
16、65解法三:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的四种方法,再将其余的5个元素进行全排列共有51个位置选择共有AA54 收集于网络,如有侵权请联系管理员删除精品文档 种方法,最后将甲、乙两同学“松绑”,所以这样的排法一共有960种方法 512AAA542小结二:对于相邻问题,常用“捆绑法”(先捆后松) 例3: 7位同学站成一排 甲、乙两同学不能相邻的排法共有多少种? 解法一:(排除法)267?A?AA3600267种方法,此时解法二:(插空法)先将其余五个同学排好有5A5他们留下六个位置(就称为“空”吧),再将甲、乙同学分别插入
17、这种方法,所以一共有种方法 六个位置(空)有2523600A?AA656甲、乙和丙三个同学都不能相邻的排法共有多少种? 解:先将其余四个同学排好有种方法,此时他们留下五个“空”,4A4种方法,所以一再将甲、乙和丙三个同学分别插入这五个“空”有3A51440种 共有34AA54小结三:对于不相邻问题,常用“插空法”(特殊元素后考虑) 三、小结: 1对有约束条件的排列问题,应注意如下类型: 某些元素不能在或必须排列在某一位置; 某些元素要求连排(即必须相邻); 某些元素要求分离(即不能相邻); 2基本的解题方法: 收集于网络,如有侵权请联系管理员删除精品文档 有特殊元素或特殊位置的排列问题,通常是
18、先排特殊元素或特殊位置,称为优先处理特殊元素(位置)法(优限法); 某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”; 某些元素不相邻排列时,可以先排其他元素,再将这些不相邻元素插入空挡,这种方法称为“插空法”; 在处理排列问题时,一般可采用直接和间接两种思维形式,从而寻求有效的解题途径,这是学好排列问题的根基 四、作业:课课练之“排列 课时13” 课题:排列的简单应用(2) 目的:使学生切实学会用排列数公式计算和解决简单的实际问题,进一步培养分析问题、解决问题的能力,同时让学生学会一题多解 过程: 一、复习: 1排列、排
19、列数的定义,排列数的两个计算公式; 2常见的排队的三种题型: 某些元素不能在或必须排列在某一位置优限法; 某些元素要求连排(即必须相邻)捆绑法; 某些元素要求分离(即不能相邻)插空法 3分类、分布思想的应用 收集于网络,如有侵权请联系管理员删除精品文档 二、新授: 示例一: 从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法? 解法一:(从特殊位置考虑)51A136080A?99 解法二:(从特殊元素考虑)若选: 若不选: 65AA5?99136080 则共有65A?A599136080 解法三:(间接法)56AA?109
20、示例二: 八个人排成前后两排,每排四人,其中甲、乙要排在前排,丙要排在后排,则共有多少种不同的排法? ;丙排在后排;其余进行全排列 略解:甲、乙排在前排512AAA5445760种方法 所以一共有512AAA544 不同的五种商品在货架上排成一排,其中a, b两种商品必须排在一起,而c, d两种商品不排在一起, 则不同的排法共有多少种? 略解:(“捆绑法”和“插空法”的综合应用)a, b捆在一起与e进行; 2排列有A2 此时留下三个空,将c, d两种商品排进去一共有;最后将a, b2A3所以一共有24种方法 2222“松绑”有AAAA3222 6张同排连号的电影票,分给3名教师与3名学生,若要
21、求师生相间而坐,则不同的坐法有多少种? 收集于网络,如有侵权请联系管理员删除精品文档 ;若第一个为学生则略解:(分类)若第一个为老师则有33AA33 有33AA33 所以一共有272种方法 33AA33示例三: 由数字1,2,3,4,5可以组成多少个没有重复数字的正整数? 略解:43521A?A?A?A?A32555555 由数字1,2,3,4,5可以组成多少个没有重复数字,并且比13 000大的正整数? 解法一:分成两类,一类是首位为1时,十位必须大于等于3种方法;另一类是首位不为1,有种方法所以一共有有3141AAAA3344个数比13 000大 3141AA114A?A?3344个,所以
22、比13 小的正整数有13 000解法二:(排除法)比3A3000大的正整数有114个 35AA?35示例四: 用1,3,6,7,8,9组成无重复数字的四位数,由小到大排列 第114个数是多少? 3 796是第几个数? 个,所以第114的四位数一共有1解: 因为千位数是3?A605个数的千位数应该是“3”,十位数字是“1”即“31”开头的四位数有个;同理,以“36”、“37”、“38”开头的数也分别有12个,所以212?A4第114个数的前两位数必然是“39”,而“3 968”排在第6个位置上,所以“3 968” 是第114个数 收集于网络,如有侵权请联系管理员删除精品文档 由上可知“37”开头
23、的数的前面有60121284个,而3 796在“37”开头的四位数中排在第11个(倒数第二个),故3 796是第95个数 示例五: 用0,1,2,3,4,5组成无重复数字的四位数,其中 能被25整除的数有多少个? 十位数字比个位数字大的有多少个? 解: 能被25整除的四位数的末两位只能为25,50两个,所以一共个,末尾为25的有的四位数有种,末尾为50112AAA33421个 有112AAA334 注: 能被25整除的四位数的末两位只能为25,50,75,00四种情况 用0,1,2,3,4,5组成无重复数字的四位数,一共有个因为在这300个数中,十位数字与个位数字的大小关31300AA?551
24、 个31”,所以十位数字比个位数字大的有系是“等可能的?AA150 552三、小结:能够根据题意选择适当的排列方法,同时注意考虑问题的全面性,此外能够借助一题多解检验答案的正确性 四、作业:“3X”之 排列 练习 组 合 课题:组合、组合数的概念 目的:理解组合的意义,掌握组合数的计算公式 过程: 收集于网络,如有侵权请联系管理员删除精品文档 一、复习、引入: 1复习排列的有关内容: 式 同排列 义 点 排 列 以上由学生口答 2提出问题: 示例1: 从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法? 示例2: 从甲、乙
25、、丙3名同学中选出2名去参加一项活动,有多少种不同的选法? 引导观察:示例1中不但要求选出2名同学,而且还要按照一定的顺序“排列”,而示例2只要求选出2名同学,是与顺序无关的 引出课题:组合问题 二、新授: 1组合的概念:一般地,从n个不同元素中取出m(mn)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合 注:1不同元素 2“只取不排”无序性 3相同组合:元素 相同 判断下列问题哪个是排列问题哪个是组合问题: 收集于网络,如有侵权请联系管理员删除精品文档 、D四个景点选出2C 从A个进行游览;(组合)B 从甲、乙、丙、丁四个学生中选出2个人担任班长和团支部书记(排列) 2组合数的概
26、念:从n个不同元素中取出m(mn)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合表示 用符号数mCn 例如:示例2中从3个同学选出2名同学的组合可以为:甲种组合 乙,甲丙,乙丙即有2?C33、D四个景点选出A2B个进行游览的组合:C 又如:从AB,AC,AD,BC,BD,CD一共6种组合,即: 26?C4 在讲解时一定要让学生去分析:要解决的问题是排列问题还是呢? 那么又如何计算关键是看是否与顺序有关组合问题,mCn3组合数公式的推导 ,d中取出3,c个元素的组合数提问:从4个不同元素a,b是多少呢? 3C4启发: 由于排列是先组合再排列,而从4个不同元素中取出3 可以求得,故
27、我们可以考察一下和的关333个元素的排列数AAC444系,如下: 组 合 排列 abc?abc,bac,cab,acb,bca,cba dbaabd?dabbadabd,bda,adbadcacd?,daccadacd,cda,dcabdcbcd?,cbdbcd,dbc,cdb,dcb 收集于网络,如有侵权请联系管理员删除精品文档 由此可知:每一个组合都对应着6个不同的排列,因此,求从4个不同元素中取出3个元素的排列数,可以分如下两步: 考3A4个; 对每一个个元素的组合,共有3虑从4个不同元素中取出3C4种方法由分步计数原理个不同元素进行全排列,各有3组合的3A33A,所以: 得:33334
28、A?CA?C 34443A3 推广: 一般地,求从n个不同元素中取出m个元素的排列,可以分如下两步: 先求从n个不同元素中取出m个元素的数mAn; 求每一个组合中m个元素全排列数,根据分布计组合数mmACmn 数原理得:mmmA?CAmnn 组合数的公式: mAn(n?1)(n?2)?(n?m?1) mn?C? nm!mAmn! m? 或?C)nm?N?,且(n,m nm!(n?m)! 巩固练习: 1计算: 74CC107m?1 2求证:1m?mC?C? nnn?m3设 求的值 ?x?2x31,Nx?CC?1?3x2?x?2x?3?x?1? 即:2x 解:由题意可得:4 ?x?1?2x?3?
29、x=2或3或4 ,xN? 当x=2时原式值为7;当x=3时原式值为7;当x=2时原式值为11 收集于网络,如有侵权请联系管理员删除精品文档 所求值为4或7或11 4例题讲评 例1 6本不同的书分给甲、乙、丙3同学,每人各得2本,有多少种不同的分 法? 略解: 22290C?C?C246例24名男生和6名女生组成至少有1个男生参加的三人实践活动小组,问组成方法共有多少种? 解法一:(直接法)小组构成有三种情形:3男,2男1女,1,所以一共有,+女,分别有男22221112133C?CCC?CCC?CCC4446466644100种方法 解法二:(间接法)33CC?100106 5学生练习:(课本
30、99练习) 三、小结: 定 特 相公 式 同组合点义 排 列 组 合 此外,解决实际问题时首先要看是否与顺序有关,从而确定是排列问题还是组合问题,必要时要利用分类和分步计数原理 四、作业:课堂作业:教学与测试75课 课外作业:课课练 课时7和8 收集于网络,如有侵权请联系管理员删除精品文档 组 合 课题:组合的简单应用及组合数的两个性质 目的:深刻理解排列与组合的区别和联系,熟练掌握组合数的计算公式;掌握组合数的两个性质,并且能够运用它解决一些简单的应用问题 过程: 一、复习回顾: 1复习排列和组合的有关内容: 强调:排列次序性;组合无序性 2练习一: n (本式也可变形为:) 1?mm:求证
31、:练习11?mmmC?nCCC? 1n?n1n?nm和; 与; 练习2:计算:7332354CCCCC?C?C10106761111 答案: 120,120 20,20 792 (此练习的目的为下面学习组合数的两个性质打好基础) 3练习二: 平面内有10个点,以其中每2个点为端点的线段共有多少条? 平面内有10个点,以其中每2个点为端点的有向线段共有多少条? (组合问题) (排列问题) 22答案:CA?90451010二、新授: 1组合数的 性质1: mn?mCC?nn 收集于网络,如有侵权请联系管理员删除精品文档 理解: 一般地,从n个不同元素中取出m个元素后,剩下n ? m个元素因 为从n
32、个不同元素中取出m个元素的每一个组合,与剩下的n ? m个元素的每一个组合一一对应,所以从n个不同元素中取出m个元素的组合数,等于从这n个元素中取出n ? m个元素的组合在这里,我们主要体现:“取法”与“剩法”是“一数,即:mn?mC?Cnn一对应”的思想 n!n! 证明:m?n?C n(n?m)!n?(n?m)!m!(n?m)!n! 又 m?mnC?Cm?Cnn nm!(n?m)! 0 我们规定注:1?C1n 2? 等式特点:等式两边下标同,上标之和等于下标 n时,计算此性质作用:当可变为计算3? mn?m,能够使CC?mnn 2运算简化 =2002 2001?2002例如:20011CCC
33、200220022002 4? 或 yxCC?ny?y?x?xnn2示例一:(课本101例4)一个口袋内装有大小相同的7个白球和1个黑球 从口袋内取出3个球,共有多少种取法? 从口袋内取出3个球,使其中含有1个黑球,有多少种取法? 从口袋内取出3个球,使其中不含黑球,有多少种取法? 332 解:35?C?C21?C56787 收集于网络,如有侵权请联系管理员删除精品文档 引导学生发现:为什么呢? 332C?CC?787 我们可以这样解释:从口袋内的8个球中所取出的3个球,可以分为两类:一类含有1个黑球,一类不含有黑球因此根据分类计数原理,上述等式成立 一般地,从这n+1个不同元素中取出m个元素
34、的a?,a,a,11n?2,一类不含,这些组合可以分为两类:一类含有元素组合数是maC1?n1含有的组合是从这n个元素中取出m ?1个元素有aa,a,?,aa1n23?11组成的,共有个;不含有的组合是从这n个与1?ma,?,a,aaaCn1n?3211个根据分类计数原理,可以个元素组成的,共有m元素中取出mCn得到组合数的另一个性质在这里,我们主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想 3组合数的 性质2:+ m1mm?CCCnnn1? n!n! 证明: 1?mm?C?C nnm!(n?m)!(m?1)!n?(m?1)!n!(n?m?1)?n!m ? )!?m?1(m!n(
35、n?m?1?m)n! ? m!(n?m?1)!(n?1)! ? m!(n?m?1)! mC?1n? + m1mm?CCCnnn1? 注:1? 公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与高的相同的一个组合数 2? 此性质的作用:恒等变形,简化运算在今后学习“二项式定理”时,我们会看到它的主要应用 收集于网络,如有侵权请联系管理员删除精品文档 4示例二: 计算: 6534CC?C?C9778+ 求证: 1n?n2n?nCC2CCm2m?mm 解方程: 3?12x?xC?C13131 解方程: 3x?3?2xAC?C 3xx?22x?10和 计算: 024135042
36、31C?C?C?CC?CCCC?C?C?55555544444 推广:n?1n012nC2?C?C?C?C?nnnnn 5组合数性质的简单应用: 证明下列等式成立: (讲解) 1kk?kkkkC?C?C?CCC?nnk?2?nkn?131 (练习) 1?kkkkkC?C?CC?C1?k2?knk?1n?kk?n n0123n1C?C?C?3C?nC?C?C2)( nnnnnnn2 6处理教学与测试76课例题 三、小结:1组合数的两个性质; 2从特殊到一般的归纳思想 四、作业: 课堂作业:教学与测试76课 课外作业:课本习题10.3;课课练课时9 组 合 课题:组合、组合数的综合应用 目的:进一
37、步巩固组合、组合数的概念及其性质,能够解决一些较为复杂的组合应用问题,提高合理选用知识的能力 过程: 收集于网络,如有侵权请联系管理员删除精品文档 一、知识复习: 1复习排列和组合的有关内容: 依然强调:排列次序性;组合无序性 2排列数、组合数的公式及有关性质 性质1: 性质2:+ mmn?m1mm?C?CCCCnnnn?n1 常用的等式: 1k?00k1?CC?C?C?1kkk?1k? 3练习:处理教学与测试76课例题 二、例题评讲: 例1100件产品中有合格品90件,次品10件,现从中抽取4件检查 都不是次品的取法有多少种? 至少有1件次品的取法有多少种? 不都是次品的取法有多少种? ;
38、解: 4C?255519090; 431413224 CC?C?CCC?CC?C13660351009010109090901010 413223441 C?CCCC?CC?C?C?39210151001010909090101090例2从编号为1,2,3,10,11的共11个球中,取出5个球,使得这5个球的编号之和为奇数,则一共有多少种不同的取法? ;3奇2偶有;5奇1偶 解:分为三类:1奇4偶有2143CCCC6655 5有C6+ 所以一共有52314C?CCCC23665656 收集于网络,如有侵权请联系管理员删除精品文档 例3现有8名青年,其中有5名能胜任英语翻译工作;有4名青年能胜任
39、德语翻 译工作(其中有1名青年两项工作都能胜任),现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,则有多少种不同的选法? 解:我们可以分为三类: 让两项工作都能担任的青年从事英语翻译工作,有; 22CC34; 让两项工作都能担任的青年从事德语翻译工作,有 31CC34 让两项工作都能担任的青年不从事任何工作,有 23CC34 所以一共有+42种方法 213322CCCCCC334434例4甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可以排出多少种不同的值周表 ? 解法一:(排除法)211212?2C?42CCC?CC536444
40、 解法二:分为两类:一类为甲不值周一,也不值周六,有所以一共有;另一类为甲不值周一,但值周六,有2221CCCC434442种方法 +2221CCCC4344例56本不同的书全部送给5人,每人至少1本,有多少种不同的送书方法? 解:第一步从6本不同的书中任取2本“捆绑”在一起看成一个种方法;第二步将5个“不同元素(书)”分给5个人有5元素有2AC561800种方法 5种方法根据分步计数原理,一共有2AC56 变题1:6本不同的书全部送给5人,有多少种不同的送书方法? 收集于网络,如有侵权请联系管理员删除精品文档 变题2: 5本不同的书全部送给6人,每人至多1本,有多少种不同的送书方法? 变题3: 5本相同的书全部送给6人,每人至多1本,有多少种不同的送书方法? 答案:1; 2; 3 5566720?AC?15625?566三、小结:1组合的定义,组合数的公式及其两个性质; 2组合的应用:分清是否要排序 四、作业:3+X 组合
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年工业互联网平台5G模组市场应用适配性趋势研究报告
- 2025年工业互联网平台数据备份与恢复策略与云服务的融合报告
- 2025版市政基础设施土石方开挖施工管理合同范本
- 2025年城市景观策划咨询服务合同
- 2025版智能电网建设运营合作合同模板
- 2025年度教育课程定制合同买卖合同书
- 2025第7章生物质能工程项目合同管理方案
- 2025年度电竞主题咖啡馆经营转让及赛事举办权合作协议
- 2025版煤炭资源探矿权承包开发合同
- 2025年度残障人士就业促进专项用工附加协议书模板
- 2025河北保定市唐县招聘社区工作者64人考试备考试题及答案解析
- 2025至2030年中国物业管理行业市场发展现状及投资前景展望报告
- 气动阀基础知识培训课件
- 2025云南昆明巫家坝建设发展有限责任公司招聘23人笔试参考题库附答案解析
- 2025年基孔肯雅热和登革热防控知识考试试题及参考答案
- 2025-2026学年浙教版(2024)初中科学八年级上册教学计划及进度表
- 2025-2026学年第一学期安全主题教育
- 汽车美容承包合同(标准版)
- 管道设计培训课件
- 2025-2026学年新交际英语(2024)小学英语一年级上册教学计划及进度表
- 河北省廊坊市2024-2025学年高一下学期期末考试 数学试卷
评论
0/150
提交评论