中兴5G中级面试整理_第1页
中兴5G中级面试整理_第2页
中兴5G中级面试整理_第3页
中兴5G中级面试整理_第4页
中兴5G中级面试整理_第5页
已阅读5页,还剩88页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、中兴5G中级面试整理-供参考1 身份验证2 哪个项目,主要工作,工程进展网管操作:按照参数要求配置新开站参数,主要涉及配置锚点站邻区、SCTP链路、X2AP链路,SN添加删腿门限 B1=-105,A2=-121等;配合单验,修改功率、修改方位角、电子下倾、波束;参数核查,配合专家参数验证-大倾角测试;KPI指标处理:SN添加、SN变更TOP小区处理,主要从LTE侧处理;配合专家QCELL专题验证;精品网速率验证等RF优化:5G RF优化3 锚点优先锚点优先:意思就是我们现网有3个频段(1.82.1800)都是锚点站,现网配置1.8G锚点优先占用,因为我们现网1.8G覆盖最好; 1.8G锚点优先

2、,具体操作就是NSA用户优先占用1.8G,当NSA用户占用2.1或者800时,尽早启动A2(-75)异频测量+A4(-105),尽早切换至1.8G频段;当NSA用户占用1.8G时较难启动A2(-105)+A5(-110,-100)。 定向重选:2.1800开启EN-DC锚定IMMCI功能,到1.8频段驻留态EN-DC锚定功能频点优先级设置255。 同时开启:禁止NSA终端负荷均衡。4 外场测试关注哪些指标RSRP -70 SINR 15DL 800 MCS 25-28 RB 275Grant Num 1400 覆盖率(-110/-3)95%5 速率不达标怎么排查软件版本检查;硬件告警、故障日志

3、排查: 告警重点关注MIMO类license超限后,会导致终端rank限制在Rank1调度;终端能力排查SIM卡开户排查(gNodeB会跟踪核心网下发的AMBR信息,对终端用户进行速率限制,即终端用户的上行、下行速率不超过对应的上下行AMBR。用户的QCI信息,会与基站侧的QCI级的PDCP、RLC相关定时器参数(包含SN bit数、RLC模式等)进行关联,从而影响到用户的吞吐率性能。);服务器、笔记本、与灌包软件设置覆盖与选点通道校正排查:通道校正成功才能确保下行吞吐率性能干扰排查:上行干扰会影响SRS和PUSCH解调性能,严重影响吞吐率性能,正常情况下底噪在-116dbm左右。常见干扰有:

4、1)服务小区和周边邻区子帧配比不一致;2)还回干扰;3)外部无线通信系统干扰;4)LTE TDD 3.5G对NR 3.5G的干扰;5)NR小区帧偏置错误引起的干扰参数核查其他影响下行速率的因素:DL Grant不足、下行MCS和BLER、RANK、6 SN接入的过程与分类SN接入过程:MN向SN发送添加请求request,SN会回复MN一个请求完成requestack,然后MN向UE发送重配置,UE向MN发送重配完成,最后MN向SN发送一条sgnb重配完成,空口信令完成,此时完成SN接入。 SN添加需要45G互操作配置正常,共5条:4-5邻区,SCTP,X2AP;5-4SCTP,X2AP,缺一

5、不可,5条必须都存在且都正常。添加失败主要原因在这;另有一部分失败多为,基站故障,5G容量设置过小,数据配置错误等。1、版本配套核查:确保NR、LTE、TUE、CPE、U2020、核心网的版本是推荐版本且不同网元版本配套2、操作,告警、故障以及外部事件排查:对于操作日志主要排查是否存在影响接入的操作,主要判断问题时间点与操作时间点是否存在相关性;对于告警及故障主要查看问题时间点,是否存在相关未恢复的告警,同时根据问题恶化时间点,咨询了解是否存在重要影响的事件,对事件进行关联分析3、参数核查:1、NSA DC相关配置,包括NR外部小区、频点,邻区关系是否正确,DC开关是否打开2、X2链路配置是否

6、正确、X2链路数量是否满规格3、同一LTE小区是否存在NR邻区PCI冲突、同一NR站点下是否存在PCI冲突4、端管识别开关、PDCP参数组核查等5、GNBIDLENGTH一致性核查6、NrNetworkingOption NR架构选项核查7、19BC10NRMFBIFREQ核查8、2.6G帧偏置设置核查4、UE基础配置排查:终端是否支持5G、网络模式设置是否正确5、SIM卡开户排查:与核心网确认,确保SIM卡开户正常,LTE和5G都能正常接入网络,不被核心网拒绝。6、射频通道排查:当小区存在干扰信号时,小区的上下行业务会受到影响,严重时会导致小区无法接入。7、LTE空口排查:LTE侧接入失败:

7、1、LTE端管协同开关未开启导致终端不在LTE发起接入2、LTE小区状态配置异常3、用户在LTE发起Attach被核心网拒绝NR测量未下发:UE在LTE接入后,LTE判断是否给该用户下发NSA B1测量,需要判断以下几个条件:UE能力上报中包含en-dc-r15的UE能力、核心网未禁止该用户的NSA能力、UE使用的承载QCI非LTE一些特殊QCI、LTE侧NSA开关、NR邻频点配置正确、NSA DC开关是否正常、LTE小区本身具备NSA能力、UE MRDC能力中支持PCC锚点和NR SCG频点组合NR小区测量不到:NR频点配置错误、B1门限是否配置过高、弱覆盖、终端测试点是否处于NR小区覆盖内

8、、NR小区状态异常、AAU发功异常、AAU通道校正失败、基站与终端距离很近时,下行功率过饱和导致搜索不到小区、相邻5G小区干扰导致小区搜索失败、终端问题没有搜索到NR小区、异频测量对象过多,导致终端测量慢,3秒超时上报B1测量但是没有发起SgNB Add流程:邻区漏配、邻区PCI冲突、X2故障、频点配置是否正确、NSA DC开关是否正常。8、NR空口接入失败UE收到重配置消息不发起接入:1、5G小区搜索失败,这种多半是由于接入的小区并非最强小区或者该区域小区间干扰严重导致。2、SCG重配置消息中的参数在UE侧校验失败,这种情况建议终端的工程师共同定位。空口接入RAR超时:根序列索引、小区半径、

9、上行峰值脚本配置7 SN切换过程SN变更与SN添加雷同,增加一条5G与5G的邻区关系。8 RSRP接收较低原因覆盖?选点?缺站?遮挡?站间距大?9 自定义基线怎么配置使用基线管理功能新建基线,选取一个站点作为模板,配置需要自定义的参数和值,之后创建。创建完成后,可以同版本的站刷该基线。另外部分需要区分编号的参数,如第1波束和第2波束的方位角需要的值不同时,自定义基线无法区分,只能统一刷,这部分参数只能手动修改。10 电联和移动使用的帧结构分别是什么电联2.5毫秒双周期,移动5毫秒单周中移配置为5MS单周期NR帧结构包含下行符号D,上行符号U,灵活符号X,支持单周期与双周期,用以应对灵活的用户需

10、求参考子载波间隔配置周期纯下行符号Slot数目纯上行符号slot数目上行符号数目下行符号数目11 SN添加基站拒绝失败如何排查?1) 检查是否存在SN添加成功率异常的NR小区或LTE锚点TOP小区;2) 检查是否存在4-5 SN 添加异常的TOP邻区对;3) 检查TOP邻区对中锚点侧小区基础KPI是否正常,掉线率是否正常,是否存在告警,高NI等;4) 检查TOP邻区对中邻区对目标侧NR侧基站状态是否正常,是否存在告警,高NI;5) 检查异常锚点LTE侧版本,确保现场LTE锚点版本为V0P11及以后;6) 检查锚点侧参数配置,4-5外部邻区定义核查,NR邻区PCI混淆;7) 4

11、-5 x2偶联配置,X2状态核查;8) 覆盖问题排查是否存在过覆盖,55,4-5邻区漏配问题;9) 加腿B1门限设置过低核查;10) NR侧按要求强刷随版本的基线参数,其他参数问题:核查根序列、PrachConfigurationIndex、Ncs配置,NR侧相关技术通知单核查:/tsm/FileCenter/File.aspx?Mode=read&FileID=30693820。12 问题:SN变更需要45G侧如何配置邻区5G源小区与目标小区需要配置相同4G锚点及SCTP/X2链路,5G基站之间需互配邻区关系13 问题:如果5G没有配邻区是否会发生变更

12、答案:不会SN变更网元关系按流程分析如下:1) 如果缺失1的邻区关系,否则UE不会去测量目标Sgnb的信号,不会触发SN change流程。2) 如果缺失2的X2链接,也不会触发SN change的开始。3) 如果3缺失X2或邻区关系或目标Sgnb断链,则会出现SN change准备失败。4) 如果前面的SN change准备成功,在步骤1的时候UE无法接入目标sgnb,会出现SN change执行失败。14 问题:信令里面没有签约速率吗?答案:可以15 TM6、TM7分别是什么TM6,Rank1的传输:主要适合于小区边缘的情况。 TM7,Port5的单流Beamforming模式:主要也是小

13、区边缘,能够有效对抗干扰。16 5G簇优化方法17 5G下行峰值速率怎么计算2.5ms双周期由2.5ms双周期帧结构可知,在特殊子帧时隙配比为10:2:2的情况下,5ms内有(5+2*10/14)个下行slot,则每毫秒的下行slot数目约为1.28个/ms。下行理论峰值速率的粗略计算:273RB*12子载波*11符号(扣除开销)*1.28/ms*8bit(256QAM)*4流=1.48Gbps18 SN变更流程19 独立载波与共享载波的区别独立载波:同基站,不同载波;共享载波:同基站,相同载波 20 空闲态及业务态锚点优先策略21 IMMIC在哪条信令里下发22 5G拉网SINR如何优化自由

14、发挥即可,锚点站的优化之后从弱覆盖,重叠覆盖度高,乒乓切换,等角度说就可以(我就知道这些)23 业务态非锚点到锚点优先级策略里什么时候会触发A2+A4一个是从锚点切换到非锚点小区后会下发,一个是进行完volte之后会下发 日常工作负责内容需要根据自己的工作内容或者想要答辩的内容自己说24 SN添加失败原因有哪些:检查是否存在SN添加成功率异常的NR小区或LTE锚点TOP小区;检查是否存在4-5 SN 添加异常的TOP邻区对;检查TOP邻区对中锚点侧小区基础KPI是否正常,掉线率是否正常,是否存在告警,高NI等;检查TOP邻区对中邻区对目标侧NR侧基站状态是否正常,是否存在告警,高NI;检查异常

15、锚点LTE侧版本,确保现场LTE锚点版本为V0P11及以后;检查锚点侧参数配置,4-5外部邻区定义核查,NR邻区PCI混淆;4-5 x2偶联配置,X2状态核查;覆盖问题排查是否存在过覆盖,55,4-5邻区漏配问题;加腿B1门限设置过低核查;NR侧按要求强刷随版本的基线参数,其他参数问题:核查根序列、PrachConfigurationIndex、Ncs配置,NR侧相关技术通知单核查:/tsm/FileCenter/File.aspx?Mode=read&FileID=30693820。25 NSA信令流程:26 传输问题导致的异常案例:

16、SPN告警、同一个近端机房两个站点传输配置错误导致接入失败、开站时传输配置为1G导致速率较低。27 测试过程中接入不了5G看那些参数:1. SCTP及X2接口配置;2. EN-DC功能开关配置;3. “移动性预留开关6打开代表基站运行的为RRC 930协议版本,关闭代表基站运行的为RRC630协议版本。此处根据调试需求进行配置,若调试的为930协议版本,则打开;调试的为630协议版本,则关闭。后续协议升级后,开关保持打开状态即可4. 针对数据默认承载进行双链接承载类型的修改,语音承载不用修改。(数据默认承载一般为QCI9,也可能为QCI8、QCI6,现场根据实际修改。)以QCI9为例,修改双链

17、接承载类型为“SCG模式1”,注意不能配置为“MCG 模式0”,否则会导致B1测量不能下发,SN添加失败。5. 5G双链接请求LTE band集合:填写运营商用于45G双链接的所有LTE 频段;现场根据锚点站的实际频段进行配置,FDD 1.8G做锚点配置为band 3, FDD 2.1G做锚点配置为band 1, TDD 1.9G做锚点配置为band 396. 在E-UTRAN FDD小区测量参数NR载频相关配置里面进行NR测量频点配置,最多可以配置8个NR测量频点。其中,NR下行载频所在的频段指示和NR SSB载频(MHz),分别配置需要测量的NR频点的Band指示和物理频点7. NR邻接小

18、区配置、NR邻接关系配置8.在测量参数配置UE系统间测量参数里面针对系统间测量配置号为2100的B1事件进行门限修改,修改RSRP门限为-120,现场也可以根据实际的测试情况进行门限调整,目的是5G小区的信号可以高于该门限,4/5G SN双连接可以正常添加9PDCP SN长度配置为1810.4/5G基站侧的加密和完整性保护算法的配置需要保持一致,否则会导致NSA业务不通。NSA组网4G基站侧加密和完保算法务必与现网站点保持一致,下文加密和完保算法以2:1:3:0为示例28 什么是NSA和SANSA和SA是5G现行组网的两种主要方式。简单来讲,NSA是融合现在4G基站和网络架构部署的5G网络。因

19、此,其建设速度非常快,直接利用4G基站加装5G基站,即可实现5G网络覆盖。但由于架构使用的还是4G网络架构,导致5G网络的海量物联网接入和低时延特性无法发挥。而SA组网被称为独立组网。说白了就是重新建设5G基站和后端5G网络,从而完全实现5G网络的所有特性和功能。但因为所有基站和基础设施都需要重新建设,所以建设成本相当的高。29 变更成功率优化 答:4到5邻区精细优化,500m范围全部添加,在远的根据扇区主打方向添加,提取锚点4G切换次数,切换次数最多的添加,后期提取4G变更kpi,目标测失败其他原因上报65535的添加,65535表示空值,表示4-5漏配,还有sctp、x2ap核查,外部定义

20、核查,5到5邻区外部定义核查,还有单向锚点配置核查,锚点功能开关,测量参数频点核查,频点里sa指示不能配置为0 30 现在用的什么波束,都有什么特点?答:中移5单有8波束,电联2.5双7波束,分宽波束和窄波束,现在统一使用宽波束,65水平,宽波束举个例子,就是8秒我发一个非常宽的波束扫描,窄波束1秒发7个窄的进行扫描,窄波束特点是可以提升覆盖,但是速率会比较低,宽波束速率好,但是覆盖没有窄波束好。31 5G比4G多了什么状态?答:5G有三总状态,分别是空闲态,连接和不活动态,不活动是当基站检测到你在不5G不存在业务是,会进入到不活动态,不活动态会保留5g信息,让你在不不做业务时可以驻留在5G,

21、参数可在5gDu小区设置,有一个定时器,相关连全局开关里面的RRC状态的设置,可以设置成空闲和不活动,还有就是不活动的时延。4-sn切换?答:切换分为带sn切和不带sn切,不带sn切就是4g切换,会先释放掉5g,当4g切换过去了会重新添加,4gENDC功能里面带sn切换必须打开,不然切换速率会掉坑,带sn切换就是4g切换,得满足目标小区减去源小区的值要大于sn的门限,这个门限现网配置是0,当满足这个门限4g切换的同时,5g跟着变更,当小于这个门限时,4g切换,5g不变32 NSA 与 SA的不同一、 性质不同:NSA 为非独立组网,SA为独立组网二、 网级互通不同:NSA组网,5G与4G在接入

22、网级互通,互联复杂;SA组网,5G网络独立于4G网络,5G与4G仅在核心网级互通,互连简单三、 接入技术不同: NSA组网,终端双连接LTE和NR两种无线接入技术;SA组网下,终端只连接NR一种无线技术33 NSA独立移动性策略:1,非锚点非锚点继承现网4G终端的移动性,包括引用的事件和门限(版本默认)2,非锚点锚点期望较容易切换,推荐使用A4事件(新建测量配置号30004)3,QCI1的切换通过PerQCI方式实现,切换门限没有数据业务配置的极端4、锚点配置(必须配置,防止连接态过早切换到非锚点)34 SN变更需要45G侧如何配置邻区5G源小区与目标小区需要配置相同4G锚点及SCTP/X2链

23、路,5G基站之间需互配邻区关系35 网格优化?应省巡检要求现在莱芜针对区政府周围做了一个网格:涉及5G基站40个,已开通30个,测试指标区政府精品区域类别目标挑战值6月7日6月11日7月3日省巡检第一轮占得上5G网络测试覆盖率(RSRP-93&SINR-3)90%99%25.60%81.12%90.67%76.82%LTE锚点覆盖率(RSRP-95&SINR-3)95%98%89.66%93.20%93.89%86.89%SgNB添加成功率95%99%100.00%100.00%100.00%95.59%驻留稳5G时长驻留比95%99%35.50%69.12%97.40%47.67%NR掉线率

24、5%95%99%95.60%100.00%100.00%98.41%NSA切换控制面板时延350ms45Mbps100Mbps00040.08路测下行平均吞吐率550Mbps1Gbps223.5212.160304路测上行低速占比(2Mbps)5%1%0.00%0.00%0.00%2.73%路测下行低速占比(100Mbps)5%80Mbps)10%80%0.00%0.00%0.00%12.57%36 上下行速率指标RSRP接收较低原因:覆盖?选点?缺站?遮挡?站间距大?Grant(调度,100M一般在270左右,265,273都有)时隙配比4:1DIC信道指示MCS(编码方式,影响速率,大了速

25、率高,25-28)BLER(误码率10%以下,基本是0%)RANK:分流,上行2T4R ;下行4T8R(T收,R发)2天线、4天线或8天线Massive MIMO指的是通道数达到64/128/256个软件版本检查;硬件告警、故障日志排查: 告警重点关注MIMO类license超限后,会导致终端rank限制在Rank1调度;终端能力排查SIM卡开户排查(gNodeB会跟踪核心网下发的AMBR信息,对终端用户进行速率限制,即终端用户的上行、下行速率不超过对应的上下行AMBR。用户的QCI信息,会与基站侧的QCI级的PDCP、RLC相关定时器参数(包含SN bit数、RLC模式等)进行关联,从而影响

26、到用户的吞吐率性能。);服务器、笔记本、与灌包软件设置覆盖与选点通道校正排查:通道校正成功才能确保下行吞吐率性能干扰排查:上行干扰会影响SRS和PUSCH解调性能,严重影响吞吐率性能,正常情况下底噪在-116dbm左右。常见干扰有:1)服务小区和周边邻区子帧配比不一致;2)还回干扰;3)外部无线通信系统干扰;4)LTE TDD 3.5G对NR 3.5G的干扰;5)NR小区帧偏置错误引起的干扰参数核查其他影响下行速率的因素:DL Grant不足、下行MCS和BLER、RANK37 NSA无法接入如何排查1.8G锚点优先,具体操作就是NSA用户优先占用1.8G,当NSA用户占用2.1或者800时,

27、尽早启动A2(-75)异频测量+A4(-105),尽早切换至1.8G频段;当NSA用户占用1.8G时较难启动A2(-105)+A5(-110,-100)。定向重选:2.1800开启EN-DC锚定IMMCI功能,到1.8频段驻留态EN-DC锚定功能频点优先级设置255。SN添加需要45G互操作配置正常,共5条:4-5NR邻区,SCTP,X2AP;5-4SCTP,X2AP,缺一不可,5条必须都存在且都正常。添加失败主要原因在这;另有一部分失败多为,基站故障,5G容量设置过小,数据配置错误等。NR频点配置错误、B1门限是否配置过高、弱覆盖、同一LTE小区是否存在NR邻区PCI冲突、同一NR站点下是否

28、存在PCI冲突38 NSA 切换流程SN接入过程:MN向SN发送添加请求request,SN会回复MN一个请求完成requestack,然后MN向UE发送重配置,UE向MN发送重配完成,最后MN向SN发送一条sgnb重配完成,空口信令完成,此时完成SN接入。39 5G核心网架构与传统核心网架构的显著区别在于:1、控制面网络功能摒弃传统的点对点通讯方式,采用统一的基于服务化架构和接口,例如上图中的Nnssf、Nsmf等;2、控制面与媒体面分离;3、移动性管理与会话管理解耦;4、核心网对接入方式不感知,各种接入方式都通过统一的机制接入网络,例如非3gpp方式也通过统一的N2/N3接口接入5G核心网

29、,3gpp与非3gpp统一认证等。40 5G性能指标包括哪些方面?5G性能指标包括六个方面,包括用户体验速率、连接数密度、端到端时延、移动性、流量密度、用户峰值速率。用户体验速率是指真实网络环境下用户可获得的最低传输速率;连接数密度是指单位面积上支持的在线设备总和;端到端时延是指数据包从源节点开始传输到被目的节点正确接收的时间;移动性是指满足一定性能要求时,收发双方间的最大相对移动速度;流量密度是指单位面积区域内的总流量;用户峰值速率是指单用户可获得的最高传输速率。41 请简述NR PDSCH支持的MCS Tables及应用场景?Table1为默认使用的Table,最大支持64QAM;Tabl

30、e2可通过高层参数mcs-Table配置,最大支持256QAM;Table3可通过高层参数mcs-Table配置,用于URLLC场景,最大支持64QAM。42 请简单描述前导码序列的生成过程?前导码序列集合包括根序列和由该根序列生成的循环移位序列,计算过程分为两个大的步骤:(1)生成一个ZC(Zadoff-Chu)根序列Xu(n),作为一个基准序列;(2)将基准序列Xu(n)进行循环移位,生成63个不同的循环序列Xuv(n)。如果在(2)中根据基准序列得到的移位序列不足63个,则重新进入(1),生成下一个基准序列,以及新的基准序列相应的移位序列,直至满足64个前导码序列为止。43 5G关键技术

31、有哪些?1)基于OFDM优化的波形和多址接入2)实现可扩展的OFDM间隔参数配置3)OFDM加窗提高多路传输效率4)先进的新型无线技术5)灵活的框架设计6)超密集异构网络7)网络切片8)网络的自组织9)内容分发网络10)设备到设备通信11)边缘计算12)软件定义网络和网络虚拟化44 简要说明一下NR测量配置中主要包括哪些部分?包括Measurement objects ,Reporting configurations,Measurement identities,Quantityconfigurations,Measurement gaps。45 描述下切换过程以及什么时候删腿什么时候加腿S

32、N接入过程:MN向SN发送添加请求request,SN会回复MN一个请求完成requestack,然后MN向UE发送重配置,UE向MN发送重配完成,最后MN向SN发送一条sgnb重配完成,空口信令完成,此时完成SN接入。46 弱覆盖怎么处理 通过天馈调整,调整方位角、下倾角,调整功率解决47 驻留优先级配置锚点优先:意思就是我们现网有3个频段(1.8 2.1 800)都是锚点站,现网配置1.8G锚点优先占用,因为我们现网1.8G覆盖最好; 1.8G锚点优先,具体操作就是NSA用户优先占用1.8G,当NSA用户占用2.1或者800时,尽早启动A2(-75)异频测量+A4(-105),尽早切换至1

33、.8G频段;当NSA用户占用1.8G时较难启动A2(-105)+A5(-110,-100)。 定向重选:2.1 800 开启EN-DC锚定IMMCI功能,到1.8频段驻留态EN-DC锚定功能频点优先级设置255。 同时开启:禁止NSA终端负荷均衡。48 双链接承载配置1、针对数据默认承载进行双链接承载类型的修改,语音承载不用修改。(数据默认承载一般为QCI9,也可能为QCI8、QCI6,现场根据实际修改。)以QCI9为例,修改双链接承载类型为“SCG模式1”,注意不能配置为“MCG 模式0”,否则会导致B1测量不能下发,SN添加失败。2、5G双链接请求LTE band集合:填写运营商用于45G

34、双链接的所有LTE 频段;现场根据锚点站的实际频段进行配置,FDD 1.8G做锚点配置为band 3, FDD 2.1G做锚点配置为band 1, TDD 1.9G做锚点配置为band 3949 SN添加信令流程50 SN释放的事件及门限51 SA与NSA组网方式的区别及优劣势NSA 是非独立组网的 5G 网络模式,简单来说就是 NSA 的 5G 是在目前 4G 基站和网络架构的基础上部署 5G 网络。这样的优势就是建设的速度非常快,直接利用现有的 4G 基站加装 5G,就可以实现 5G 网络。而且 NSA 相较 SA 标准的敲定时间更早,产品也更加成熟。但缺点就是架构依旧是 4G 网络架构,

35、所以不能发挥出 5G 网络物联网接入和低时延的特性。而 SA 组网则是独立组网的网络模式,就是重新建设 5G 基站和网络,能够完完全全的实现 5G 网络的所有功能特性。缺点则是成本高,而且建设的速度肯定不及 NSA。52 簇优化的思路以及相关指标关注53 什么是BWP?为什么要设计BWP?BWP定义为一个载波内连续的多个资源块(RB,Resource Block)的组合。引入BWP的概念主要还为了UE可以更好的使用打的载波带宽。对于一个大的载波带宽,比如100MHz,一个UE需要使用的带宽往往有限。如果让UE实时进行全带宽的检测和维护,终端的能耗将带来极大挑战。BWP概念的引入就是在整个大的载

36、波内划出部分带宽给UE进行接入和数据传输。UE只需在系统配置的这部分带宽内进行相应的操作。简单的来看就是把一个带宽的载波分割成几个BWP,每个BWP包含一段连续的物理资源块(PRB)。有的BWP上有SSB以及关联的RMSI,有的BWP上有SSB但是没有关联的RMSI,有的BWP上甚至没有SSB。当UE处于RRC空闲状态的时候,只有在广播SSB,并且有关联RMSI的BWP才是可以配置的。对于RRC连接态的UE来说,上述三种BWP都是可以配置的。但不管配置了几个BWP,在R15的版本中只有一个上行和下行的BWP处于工作状态(激活的BWP)。对于BWP的操作可以通过高层信令配置、下行PDCCH调度、

37、定时器控制三种方式实现。当UE从RRC空闲状态进入到RRC连接状态的时候,所驻留的小区的BWP称为初始BWP,因为UE是在该BWP发起初始接入过程54 5G RRC三种连接状态5G NR下RRC有三种状态:IDLE、INACTIVE、CONNECTED55 哪种状态寻呼是从5G基站侧发起的idle态56 反开TMM功率分配原则9611A AAU总功率240W,4/5G功率之和丌能超过240W总功率。5G NR典型配置60M、80M还是100M带宽推荐默认都配置为156,最大功率120W。4G LTE如果是新建则单载波功率默认40W(15.2 -3/1),可以开13载波总功率之和丌超过120W。

38、4G LTE如果是替换则优兇继承替换前D载波的功率,当总功率超过120W时,则保留主覆盖的1个载波的功率丌发,下调同覆盖的另外1戒2个载波的功率,使总功率丌超过120W。4/5G共模版本可实现业务信道4/5G功率共享,迚一步提升边缘用户体验。57 签约速率在哪个信令58 A2在哪个模块修改无线配置管理59 有测量报告没有报B1的原因。1、测量控制里没有5G站信息2、有5g信息,但是pci频点等信息错误60 DU小区退服处理思路1、核查是否有伴随告警如RRU链路断、硬件配置不一致、单板初始化等,如有伴随告警则优先处理伴随告警2、没有伴随告警,核查频点功率等相关参数是否超限3、诊断rru状态,查看

39、是否正常4、复位单板61 5G单站优化以及簇优化方法思路62 单载波与共享载波的区别和锚点配置独立载波:同基站,不同载波;共享载波:同基站,相同载波63 SN添加优化添加失败主要原因:锚点优先参数未刷,B1门限不合理,基站告警,4-5-4间的SCTP、X2链路漏配或配错,4-5邻区漏配;4G侧统计计数器:于 SgNB 响应超时,由于 SgNB 拒绝Reject,,空口重配定时器超时,gNB 接纳失败,等待 X2 口的重配超时,由于其他原因;5G侧统计计数器:F1 Context建立失败,X2口重配超时,其他原因等;64 信令面如何确定终端为NSA终端建立RRC连接后,基站下发UECapabil

40、ityEnquiry查询UE能力,UE反馈UECapabilityInformation包括UE能力等级,携带EN-DC-R15=supported表示支持;基站再进行二次能力查询,UE反馈band(锚点)+N(NR)的支持频段65 移动用的周期配置移动的SCS=30khz,以10个时隙配置为1帧的5ms单周期,NR周期配置:0.5,0.625,1,1.25,2,2.5,5,10 ms,0.5、0.625ms用于120kHz,1.25ms用于60kHz及以上;2.5ms用于30kHz及以上,10ms仅用于15khz66 特殊子帧时隙配比无线帧10ms=10个子帧1ms,时隙=12/14个符号周

41、期,符号周期=/SCS+CP长度ms;LTE是按子帧进行调度,NR是时隙为基本调度单位,特殊子帧Flexible,可用于下行和上行传输;时隙Slot可配比为全下行,全上行,全Flexible灵活资源,以及第四种:看截图67 簇优化时覆盖不好怎么优化1.下倾角,方位角,天线挂高,天线位置,站址调整.2.频点,功率,PCI/PRACH,邻区,切换门限等基础参数.3.天线权值配置优化(方位角,倾角,水平/垂直波束宽度等)4.SSB/PBCH:默认采用宽波束配置,采用多波束轮询配置约5dB的覆盖增益;5.PDCCH:PDCCH Boosting:PDSCH/PDCCH:BC/BF;6.SmallCDD

42、:开启后终端上行由单发调整为4发,上行有5-6dB的覆盖增益.7.新增AAU小区加强弱信号覆盖区域.68 影响速率有哪些因素软件版本检查;硬件告警、故障日志排查: 告警重点关注MIMO类license超限后,会导致终端rank限制在Rank1调度;终端能力排查SIM卡开户排查(gNodeB会跟踪核心网下发的AMBR信息,对终端用户进行速率限制,即终端用户的上行、下行速率不超过对应的上下行AMBR。用户的QCI信息,会与基站侧的QCI级的PDCP、RLC相关定时器参数(包含SN bit数、RLC模式等)进行关联,从而影响到用户的吞吐率性能。);服务器、笔记本、与灌包软件设置覆盖与选点通道校正排查

43、:通道校正成功才能确保下行吞吐率性能干扰排查:上行干扰会影响SRS和PUSCH解调性能,严重影响吞吐率性能,正常情况下底噪在-116dbm左右。常见干扰有:1)服务小区和周边邻区子帧配比不一致;2)还回干扰;3)外部无线通信系统干扰;4)LTE TDD 3.5G对NR 3.5G的干扰;5)NR小区帧偏置错误引起的干扰参数核查其他影响下行速率的因素:DL Grant不足、下行MCS和BLER、RANK.69 前台测试时的峰值速率是怎么计算的2.5ms双周期由2.5ms双周期帧结构可知,在特殊子帧时隙配比为10:2:2的情况下,5ms内有(5+2*10/14)个下行slot,则每毫秒的下行slot

44、数目约为1.28个/ms。下行理论峰值速率的粗略计算:273RB*12子载波*11符号(扣除开销)*1.28/ms*8bit(256QAM)*4流=1.48Gbps70 5G时隙配比,哪个速率高,为什么NR频率 2515MHz-2615MHz NR带宽 100M(2515MHz-2615MHz) NR发射功率 240W(9611A) NR帧结构 5ms单周期 特殊子帧配比 DL:GP:UL=6:4:4 上下行时隙比例 2:7 DDDDDDDSUU特殊子帧GP 4个符号 SSB子载波间隔 30kHz 终端发射功率 总功率均不超26dBm 业务类型 FTP业务 无线与终端传输 IPv6/IPv4

45、基站TRX 64T64R 71 前台ping不达标可以尝试更换服务器,更换手机或者更换测试卡72 SIM卡签约速率是多少可以看用户侧信令,一般签约速率有300M,1G,2G等73 有测量报告没有报B1的原因需要判断以下几个条件:核心网未禁止该用户的NSA能力、UE使用的承载QCI非LTE一些特殊QCI、LTE侧NSA开关、NR邻频点配置正确、NSA DC开关是否正常、LTE小区本身具备NSA能力、UE MRDC能力中支持PCC锚点和NR SCG频点组合74 5G应用三大场景eMBB(增强移动宽带)、eMTC(海量物联)、uRLLC(高可靠低时延连接)75 5G三种连接状态RRC_IDLE、RR

46、C_INACTIVE 、RRC_CONNECTED76 4G的RRU和5G的AAU硬件区别5G设备主要是由4G的BBU和RRU变成了CU、DU和AAU77 反开3D-MIMO功率分配原理78 78.目前4G侧载波是独立还是非独立独立79 手机信令重配置过程中未收到NR消息,原因有哪些1、配置问题(1). LTE锚点站点和NR站点告警核查;(2). 按照对应版本的NSA站点开通指导进行开战配置核查,指导书链接: /tsm/FileCenter/File.aspx?Mode=read&FileID=30674500;(3). 确认LTE锚点站点和NR站点版本

47、为当前最新推送版本,当前最新发布版本为NR V2.00.22.01P06R05,LTEV0P40,适用于中移、电信、联通;(4). 确认X2口状态是否正常;(5). LTE锚点侧NR邻区配置核查;(6). 强刷对应版本的模型基线参数,V2.00.22.01P06以前的版本需要手动强刷基线参数,以后的版本系统会自动强刷。2、版本问题(1)拉齐LTE锚点和NR侧版本(2)重启NR侧X2M容器或NR站点(3)删除sctp偶联到10条以下(4)删建小区,网管上闭塞解闭塞来临时规避。3、终端问题(1)打开终端ENDC功能(2)更换终端或操作系统版本升级(3)NR参数:基站侧规避方法,基

48、站侧在添加SN的重配消息中,需要在cfra里增加所有可用的SSBindex,而不是只根据MR上报的ssb来配置cfra。4、核心网问题 协调核心网解决80 下行传输模式有哪些? 81 5G子载波是多少?十、簇优化时覆盖不好怎么优化5G/NR中支持多种子载波间隔,并且无线帧结构根据子载波间隔略有不同。然而,无论对于怎样的子载波间隔,一个无线帧的长度和一个子帧的长度总是相同的。无线帧的长度总是10毫秒,子帧的长度总是1毫秒。 那么,为了适应不同的子载波间隔,应该有什么不同呢?答案是把不同数量的时隙在一个子帧中。其中还有另一个变化的参数。它是时隙内符号的数量。但是,时隙内的符号数量不随子载波间隔变化

49、,它只随时隙配置类型变化。对于插时隙配置0,时隙的符号数始终为14,对于时隙配置1,时隙的符号数始终为7。5G 子载波间隔有5种:1) 子载波间隔=15KHz;CP时长=4.7微秒;OFDM符号时长=66.67微秒;2) 子载波间隔=30KHz;CP时长=2.3微秒;OFDM符号时长=33.33微秒;3) 子载波间隔=60KHz;CP时长=1.2微秒;OFDM符号时长=16.7微秒;4) 子载波间隔=120KHz;CP时长=0.59微秒;OFDM符号时长=8.33微秒;5) 子载波间隔=240KHz;CP时长=0.29微秒;OFDM符号时长=4.17微秒;82 变更优化,怎么优化的十、簇优化时

50、覆盖不好怎么优化SN变更涉及到的主要网元有MN、S-SN和T-SN:1、如果缺失Source-SgN B和Target-SgN B的邻区关系(上图1所示) , UE不会去测量目标NR邻区的信号, 不会触发SN变更流程请求次数C600600009:2、如果缺失MN与Sour ee-SgN B的邻区关系或X 2耦联(上图2所示) , 不会有该SN添加, 也就不会触发SN变更;3、如果缺失TargetS gNB和MN的邻区关系或X 2联(上图3所示) , 则会出现SN变更准备失败, 属于异常, 统计为失败次数:4、如果目标SgN B断链, 则会出现SN变更准备失败, 属于异常, 统计为失败次数:5、

51、如果前面的SN变更准备成功,但UE无法接入目标NR邻区,会出现SN变更执行失败,属于异常,统计为失敗次数。按照SN变更的流程阶段,将影响SN变更成功率的因素总结如下:1)准备阶段失败:对应上图的步骤3流程a.MN和目标侧gNB没有配置X 2口;b.MN和目标侧gNB的小区没有配置邻区关系(涉及到reserve 4开关) ;e.MN和目标侧gNB的X 2链路断;d.目标gNB掉站, 目标gNB功率不为0;2)执行阶段失败:对应上图步骤3成功后,步骤1的流程a.MN侧配置的gNB的邻区中PCI混淆;b.无线覆盖等其他原因,上述1) 中的b场景, 涉及到一个开关:全局业务开关中的reserved 4

52、, 该开关的作用是启动gap测量的开关。如果开启情况下有X 2口, 且MN有目标gNB的外部邻区, 且MN的邻区对中必须要配置指定目标gNB的eel lid:如果关闭情况下, 则只要MN和目标g目标gNB的外部邻区, 即可正常切换。但是目前海思终端要求必须开gap, 所以配置该参数为打开。 83 epsfallback配置哪些参数,信令流程:基于测量切换的EPS Fallback功能:需要进行专用B1测量事件下发,并且配置4G邻区与邻接关系,待B1 MR测量报告上报后,将UE切换至4G小区。基于测量重定向的EPS Fallback功能:需要进行专用B1测量事件下发,并且配置4G邻区与邻接关系,

53、待B1 MR测量报告上报后,通过RRCConnectionRelease消息携带合适的4G频点给UE,重定向至4G小区。基于盲重定向的EPS Fallback功能:不需要进行专用B1测量事件下发,也不需要配置4G邻区与邻接关系,直接通过RRCConnectionRelease消息携带合适的4G频点给UE,重定向至4G小区。基于测量切换的EPS Fallback功能配置一、EPS Fallback功能开关配置:在【CU小区配置移动性功能】路径下:1、 将【EPS回落开关】配置为【基于测量的方式2】,代表EPS回落采用“基于测量的方式。”2、 将【EPS回落优先执行方式】配置为【切换1】,代表EP

54、S回落的执行方式采用的是“切换”。3、 将【NR语音开关指示】配置为【false】,代表无线侧设置为不支持“VoNR”,由于目前5GC核心网都不支持VoNR,因此,当前阶段,5G语音的呼叫往往采用EPS Fallback回落至4G的方式,通过4G VoLTE的方式支持语音的连续性。后续5GC核心网支持VoNR功能部署及测试时,可以将【NR语音开关指示】配置为【true】。二、EPS Fallback回落EutranFreq配置:1、在【gNB CU-CP功能配置EutranFreq】路径下:必须配置期望回落的4G频点信息,如下图所示,并且根据现场的实际需要,进行回落频点优先级的设置,后续会详细

55、介绍。2、在【EutranFreqFrequencyBandList】路径下:同时也必须配置期望回落4G频点的freqBandIndicator信息,如下图所示。3、在【CU小区配置EutranFreqRelation】路径下:即为“引用的EUTRAN测量频点”,外场设置时,需要正确进行引用。三、EUTRAN测量对象配置:1、在【测量配置EUTRAN测量对象】路径下:必须配置(或存在)对应小区的测量EutranFreq的引用关系,每个小区都可以引用多个测量EutranFreq信息。2、在【测量配置EUTRAN测量对象】路径下:针对本5G小区引用的测量EutranFreq记录进行修改,其中:1)【测量带宽

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论