




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、人教B版高中数学必修二之立体几何测试.doc数学必修二之立体几何测试一、选择题(本大题共10小题,每小题5分,共50分)1.若直线a 不平行于平面,则下列结论成立的是( )A. 内所有的直线都与a 异面;B. 内不存在与a 平行的直线;C. 内所有的直线都与a 相交;D.直线a 与平面有公共点.2.已知两个平面垂直,下列命题( )一个平面内的已知直线必垂直于另一个平面的任意一条直线;一个平面内的已知直线必垂直于另一个平面的无数条直线;一个平面内的任一条直线必垂直于另一个平面;过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面.其中正确的个数是: A.3 B.2 C.1 D.03.空间四
2、边形ABCD 中,若AB AD AC CB CD BD =,则AC 与BD 所成角为( )A 、030B 、045C 、060D 、0904. 给出下列命题:( )(1)直线a 与平面不平行,则a 与平面内的所有直线都不平行;(2)直线a 与平面不垂直,则a 与平面内的所有直线都不垂直;(3)异面直线a 、b 不垂直,则过a 的任何平面与b 都不垂直;(4)若直线a 和b 共面,直线b 和c 共面,则a 和c 共面 其中错误命题的个数为:(A )0 (B ) 1 (C )2 (D )35正方体ABCD-A 1B 1C 1D 1中,与对角线AC 1异面的棱有( )条A 3B 4C 6D 86.
3、点P 为ABC 所在平面外一点,PO 平面ABC ,垂足为O ,若PA=PB=PC ,则点O 是ABC 的( )(A )内心 (B )外心 (C )重心 (D )垂心7.如图长方体中,AB=AD=23,CC 1=2,则二面角C 1BD C 的大小为( ) (A )300 (B )450 (C )600 (D )9008.直线a,b,c 及平面,下列命题正确的是( ) A 、若a ?,b ?,c a, c b 则c B 、若b ?, a/b 则 a/C 、若a/,=b 则a/bD 、若a , b 则a/b9.(08高考山东卷6题)右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是(
4、)(A)9 (B )10 (C)11 (D)1210、(08高考北京卷8题)如图,动点P 在正方体1111ABCD A B C D -的对角线1BD 上过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M N ,设BP x =,MN y =,则函数()y f x =的图象大致是( )二、填空题 11.已知直线a/平面,平面/平面,则a 与的位置关系为AB CDM N P A 1B 1C 1D 1y x O y x O y x O y x O A B CD A 1 B 1 C 1 D 112已知直线a 直线b, a/平面,则b 与的位置关系为 13.(08江苏16题)如图1,一个正
5、四棱柱形的密闭容器底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有a 升水时,水面恰好经过正四棱锥的顶点P 。如果将容器倒置,水面也恰好过点P (图2)。有下列四个命题:A 正四棱锥的高等于正四棱柱高的一半B 将容器侧面水平放置时,水面也恰好过点PC 任意摆放该容器,当水面静止时,水面都恰好经过点PD 若往容器内再注入a 升水,则容器恰好能装满;其中真命题的代号是:14.(浙江卷14)如图,已知球O 点面上四点A 、B 、C 、D ,DA 平面ABC ,AB BC ,DA=AB=BC=3,则球O 点体积等于_。15、在正三棱锥P ABC -(顶点在底面的射影是底面正三角形的中心)中,4,8AB
6、 PA =,过A 作与,PB PC 分别交于D 和E 的截面,则截面?ADE 的周长的最小值是_三、解答题16、在三棱锥S ABC -中,ABC 是边长为4的正三角形,平面SAC 平面,23ABC SA SC =,M 、N 分别为,AB SB 的中点 ()证明:AC SB ;()求二面角N -CM -B 的大小;()求点B 到平面CMN 的距离 17、(08高考全国一18题)四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC 底面BCDE ,2BC =,2CD =,AB AC =()证明:AD CE ;()设CE 与平面ABE 所成的角为45o ,求二面角C AD E -的大小18、(
7、08全国二19)如图,正四棱柱1111ABCD A B C D -中,124AA AB =,点E 在1CC 上且EC E C 31=()证明:1A C 平面BED ;()求二面角1A DE B -的大小19、(08四川卷19) 如图,平面ABEF 平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,090,BAD FAB BC =/=12AD ,BE /=12AF ()证明:,C D F E 四点共面; ()设AB BC BE =,求二面角A ED B -的大小;20、(08高考天津卷19题满分12分)如图,在四棱锥ABCD P -中,底面ABCD 是矩形已知60,22,2,2,3=PA
8、B PD PA AD AB ()证明AD 平面PAB ;目 ()求异面直线PC 与AD 所成的角的大小; ()求二面角A BD P -的大小21、(08高考重庆19题满分13分,()小问6分,()小问7分.)C D EA B P P 图12图如题(19)图,在ABC V 中,B=90o ,AC =152,D 、E 两点分别在AB 、AC 上.使2AD AE DB EC =,DE=3.现将ABC V 沿DE 折成直二角角,求: ()异面直线AD 与BC 的距离; ()二面角A-EC-B 的大小(用反三角函数表示).参考答案1.D ;2.C ;3.D ;4.D ;5.C ;6.B ;7.A ;8.
9、D ;9.D ;10.B11.平行或在平面内; 12. 平行或在平面内; 13.BD 14.9/215题、11 沿着PA 将正三棱锥P ABC -侧面展开,则,A D E A 共线,且/AA BC16、略; 17题解:(1)取BC 中点F ,连接DF 交CE 于点O ,Q AB AC =,AF BC ,又面ABC 面BCDE ,AF 面BCDE ,AF CE 2tan tan 2CED FDC =, 90OED ODE +=o ,90DOE =o ,即CE DF ,CE 面ADF ,CE AD (2)在面ACD 内过C 点作AD 的垂线,垂足为G Q CG AD ,CE AD ,AD 面CEG
10、 ,EG AD ,则CGE 即为所求二面角的平面角23AC CD CG AD =g ,6DG =,2230EG DE DG =-=,6CE =,则22210cos 2CG GE CE CGE CG GE +-=-g , 10arccos 10CGE ?=- ? ?,即二面角C AD E -的大小10arccos 10?- ? ? 18依题设知2AB =,1CE =()连结AC 交BD 于点F ,则BD AC 由三垂线定理知,1BD A C 在平面1A CA 内,连结EF 交1A C 于点G ,由于122AA AC FC CE =,故1Rt Rt A AC FCE ,1AA C CFE =, C
11、FE 与1FCA 互余于是1A C EF 1A C 与平面BED 内两条相交直线BD EF ,都垂直,所以1A C 平面BED ()作GH DE ,垂足为H ,连结1A H 由三垂线定理知1A H DE , 故1A HG 是二面角1A DE B -的平面角 223EF CF CE =+=,23CE CF CG EF ?=,223EG CE CG =-=13EG EF =,12315EF FD GH DE ?=?=又221126AC AA AC =+=,11563A G A C CG =-=11tan 55AG A HG HG=所以二面角1A DE B -的大小为arctan 55 A B C
12、D E A 1B 1C 1D 1 F H G19()延长DC 交AB 的延长线于点G ,由BC /=12AD 得 12GB GC BC GA GD AD =延长FE 交AB 的延长线于G 同理可得12G E G B BE G F G A AF = 故G B GB G A GA=,即G 与G 重合,因此直线CD EF 、相交于点G ,即,C D F E 四点共面。 ()设1AB =,则1BC BE =,2AD =取AE 中点M ,则BM AE ,又由已知得,AD 平面ABEF 故AD BM ,BM 与平面ADE 内两相交直线AD AE 、都垂直。所以BM 平面ADE ,作MN DE ,垂足为N
13、,连结BN 由三垂线定理知BN ED BMN ,为二面角A ED B -的平面角。12AD AE BM MN DE ?=?=故tan BM BMN MN =所以二面角A ED B -的大小arctan220()证明:在PAD ?中,由题设22,2=PD PA 可得222PD AD PA =+于是PA AD .在矩形ABCD 中,AB AD .又A AB PA =I ,所以AD 平面PAB ()解:由题设,AD BC /,所以PCB (或其补角)是异面直线PC 与AD 所成的角.在PAB ?中,由余弦定理得由()知AD 平面PAB ,?PB 平面PAB ,所以PB AD ,因而PB BC ,于是
14、PBC ?是直角三角形,故27tan =BC PB PCB 所以异面直线PC 与AD 所成的角的大小为27arctan ()解:过点P 做AB PH 于H ,过点H 做BD HE 于E ,连结PE 因为AD 平面PAB ,?PH 平面PAB ,所以PH AD .又A AB AD =I ,因而PH 平面ABCD ,故HE 为PE 再平面ABCD 内的射影.由三垂线定理可知,PE BD ,从而PEH 是二面角A BD P -的平面角。由题设可得,134,13,2,160cos ,360sin 22=?=+=-=?=?=BH BD AD HE AD AB BD AH AB BH PA AH PA P
15、H 于是再PHE RT ?中,439tan =PEH 所以二面角A BD P -的大小为439arctan 21()在答(19)图1中,因AD AE DB CE=,故BE BC .又因B 90,从而AD DE .在第(19)图2中,因A -DE -B 是直二面角,AD DE ,故AD 底面DBCE ,从而AD DB .而DB BC ,故DB 为异面直线AD 与BC 的公垂线.下求DB 之长.在答(19)图1中,由2AD AE CB BC =,得2.3DE AD BC AB =又已知DE =3,从而39.22BC DE =6.AB = 因1, 2.3DB DB AB =故()在第(19)图2中,过D 作DF CE ,交CE 的延长线于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 思政考试试题及答案解析
- 唐诗三首试题及答案解析
- 养殖管理办法规定
- 兽医人员管理办法
- 内控管理办法模板
- 内部创新管理办法
- 内陆渔业管理办法
- 军人退伍管理办法
- 军车登记管理办法
- 农业相关管理办法
- (完整word版)英语国际音标表(48个)打印版
- JCT640-2010 顶进施工法用钢筋混凝土排水管
- penelope蓝色小考拉字幕文件
- 习近平总书记关于教育的重要论述研究(安庆师范大学版)学习通超星课后章节答案期末考试题库2023年
- 餐厅杂物电梯事故应急预案
- 地表水体长度和面积遥感监测技术规范
- 工程项目档案试题
- 银行账户基本信息表
- THBFIA 0004-2020 红枣制品标准
- GB/T 2652-1989焊缝及熔敷金属拉伸试验方法
- GB/T 24824-2009普通照明用LED模块测试方法
评论
0/150
提交评论