(2021年整理)奥数行程问题归纳总结及部分例题及答案_第1页
(2021年整理)奥数行程问题归纳总结及部分例题及答案_第2页
(2021年整理)奥数行程问题归纳总结及部分例题及答案_第3页
(2021年整理)奥数行程问题归纳总结及部分例题及答案_第4页
免费预览已结束,剩余62页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、奥数行程问题归纳总结及部分例题及答案奥数行程问题归纳总结及部分例题及答案 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(奥数行程问题归纳总结及部分例题及答案)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以下为奥数行程问题归纳总结及部分例题及答案的全部内容。奥数行程:多人行程的要点及解题技巧行程问题是小学奥数中难度系数比较高的

2、一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程等等。每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1.简单行程:路程=速度时间2。相遇问题:路程和=速度和时间3。追击问题:路程差=速度差时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。如“多人行程问题”,实际最常见的是“三人行程”例:有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与

3、乙、丙相背而行.甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。在途中,甲和乙相遇后3分钟和丙相遇。问:这个花圃的周长是多少米?分析:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)3=228(米)第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228(3836)=114(分钟)第二个相遇:在114分钟里,甲、乙二人一起走完了全程所以花圃周长为(40+38)114=8892(米)我们把这样一个抽象的

4、三人行程问题分解为三个简单的问题,使解题思路更加清晰。总之,行程问题是重点,也是难点,更是锻炼思维的好工具。只要理解好“三个量”之间的“三个关系”,解决行程问题并非难事!奥数行程:多人行程例题及答案(一)行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。多人行程-这类问题主要涉及的人数为3人,主要考察的问题就是求前两个人相遇或追及的时刻,第三个人的位置,解题的思路就是把三人问题转化为寻找两两人之间的关系。例1.甲乙丙三人同时从东村去西村,甲骑自行车每小时比乙快12公里,比丙快15公里,甲行3.5小时到达西村后立刻返回。在距西村30公里处和乙相聚,

5、问:丙行了多长时间和甲相遇?答案一:设乙每小时行x公里,则甲为x+12,丙为x-15+12=x-33。5*12=(x+12)*2x=9甲为21公里,丙为6公里,213.52/(21+6)=5.44小时丙行了5。44小时和甲相遇答案二:在距西村30公里处和乙相聚,则甲比乙多走60公里,而甲骑自行车每小时比乙快12公里,所以,甲乙相聚时所用时间是60/12=5小时,所以甲从西村到和乙相聚用了5-3。5=1。5小时,所以,甲速是:30/1.5=20公里/小时,所以,丙速是:20-15=5公里/小时,东村到西村的距离是:20*3。5=70公里,所以,甲丙相遇时间是:(2*70)/(20+5)=5.6小

6、时例2。难度:高难度甲、乙、丙三辆车同时从a地出发到b地去,甲、乙两车的速度分别为60千米时和48千米时.有一辆迎面开来的卡车分别在他们出发后6时、7时、8时先后与甲、乙、丙三辆车相遇.求丙车的速度。【解答】解题思路:(多人相遇问题要转化成两两之间的问题,咱们的相遇和追击公式也是研究的两者.另外st图也是很关键)第一步:当甲经过6小时与卡车相遇时,乙也走了6小时,甲比乙多走了660486=72千米;(这也是现在乙车与卡车的距离)第二步:接上一步,乙与卡车接着走1小时相遇,所以卡车的速度为72-481=24第三步:综上整体看问题可以求出全程为:(60+24)6=504或(48+24)7=504第

7、四步:收官之战:504824=39(千米)注意事项:画图时,要标上时间,并且多人要同时标,以防思路错乱!例3.难度:高难度李华步行以每小时4千米的速度从学校出发到20。4千米外的冬令营报到。0。5小时后,营地老师闻讯前来迎接,每小时比李华多走1.2千米,又经过了1.5小时,张明从学校骑车去营地报到。结果3人同时在途中某地相遇。问:张明每小时行驶多少千米?【解答】老师出发时和李华相距20。4-40。5=18.4千米,再过18.4(4+4+1。2)=2小时相遇,相遇地点距学校24+2=10千米,张明行驶的时间为0。5小时,因此张明的速度为100。5=20千米/时。奥数行程:多人行程例题及答案(二)

8、行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。多人行程-这类问题主要涉及的人数为3 人,主要考察的问题就是求前两个人相遇或追及的时刻,第三个人的位置,解题的思路就是把三人问题转化为寻找两两人之间的关系。例1。ab两地相距30千米,甲乙丙三人同时从a到b,而且要求同时到达。现在有两辆自行车,但不许带人,但可以将自行车放在中途某处,后来的人可以接着骑.已知骑自行车的平均速度为每小时20千米,甲步行的速度是每小时5千米,乙和丙每小时4千米,那么三人需要多少小时可以同时到达?【解答】因为乙丙步行速度相等,所以他们两人步行路程和骑车路程应该是相等的。对

9、于甲因为他步行速度快一些,所以骑车路程少一点,步行路程多一些。现在考虑甲和乙丙步行路程的距离.甲多步行1千米要用1/5小时,乙多骑车1千米用1/20小时,甲多用1/5-1/20=3/20小时。甲步行1千米比乙少用1/4-1/5=1/20小时。,所以甲比乙多步行的路程是乙步行路程的:1/20/(3/20=1/3。这样设乙丙步行路程为3份,甲步行4份。如下图安排: 这样甲骑车行骑车的3/5,步行2/5。所以时间为:303/5/20+30*2/5/5=3.3小时。例2。有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。甲每分钟走40米,乙每分钟走38米,丙每分钟

10、走36米.在途中,甲和乙相遇后3分钟和丙相遇。问:这个花圃的周长是多少米?【解答】这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)3=228(米)第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228(3836)=114(分钟)第二个相遇:在114分钟里,甲、乙二人一起走完了全程所以花圃周长为(40+38)114=8892(米)我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰。总之

11、,行程问题是重点,也是难点,更是锻炼思维的好工具。只要理解好“三个量之间的“三个关系”,解决行程问题并非难事!奥数行程:二次相遇的要点及解题技巧一、概念:两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题.二、特点:它的特点是两个运动物体共同走完整个路程。小学数学教材中的行程问题,一般是指相遇问题.三、类型:相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。四、三者的基本关系及公式:它们的基本关系式如下:总路程=(甲速+乙速)相遇时间相遇时间=总路程(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度奥数行程:二次相遇例题及答案

12、(一)答题思路点拨:甲从a地出发,乙从b地出发相向而行,两人在c地相遇,相遇后甲继续走到b地后返回,乙继续走到a地后返回,第二次在d地相遇。一般知道ac和ad的距离,主要抓住第二次相遇时走的路程是第一次相遇时走的路程的两倍.例1.甲乙两车同时从a、b两地相向而行,在距b地54千米处相遇,它们各自到达对方车站后立即返回,在距a地42千米处相遇。请问a、b两地相距多少千米?a.120 b。100 c。90 d。80【解答】a。解析:设两地相距x千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即542=x-5

13、4+42,得出x=120.例2。两汽车同时从a、b两地相向而行,在离a城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离a城44千米处相遇。两城市相距( )千米a.200 b。150 c.120 d。100【解答】d。解析:第一次相遇时两车共走一个全程,第二次相遇时两车共走了两个全程,从a城出发的汽车在第二次相遇时走了522=104千米,从b城出发的汽车走了52+44=94千米,故两城间距离为(104+96)2=100千米。绕圈问题:例3。在一个圆形跑道上,甲从a点、乙从b点同时出发反向而行,8分钟后两人相遇,再过6分钟甲到b点,又过10分钟两人再次相遇,则甲环行一周需要( )?a24

14、分钟 b26分钟 c28分钟 d30分钟【解答】c.解析:甲、乙两人从第一次相遇到第二次相遇,用了6+10=16分钟。也就是说,两人16分钟走一圈。从出发到两人第一次相遇用了8分钟,所以两人共走半圈,即从a到b是半圈,甲从a到b用了8+6=14分钟,故甲环行一周需要142=28分钟。也是一个倍数关系。奥数行程:二次相遇例题及答案(二)例1.两辆汽车同时从甲、乙两地相对开出,一辆汽车每小时行56千米,另一辆汽车每小时行63千米,经过4小时后相遇。甲乙两地相距多少千米?(适于五年级程度)【解答】两辆汽车从同时相对开出到相遇各行4小时.一辆汽车的速度乘以它行驶的时间,就是它行驶的路程;另一辆汽车的速

15、度乘以它行驶的时间,就是这辆汽车行驶的路程。两车行驶路程之和,就是两地距离。564=224(千米)634=252(千米)224+252=476(千米)综合算式:564+634=224+252=476(千米)答:甲乙两地相距476千米。例2.两列火车同时从相距480千米的两个城市出发,相向而行,甲车每小时行驶40千米,乙车每小时行驶42千米。5小时后,两列火车相距多少千米?(适于五年级程度)解:此题的答案不能直接求出,先求出两车5小时共行多远后,从两地的距离480千米中,减去两车5小时共行的路程,所得就是两车的距离。480(40+42)5=480825=480-410=70(千米)答:5小时后两

16、列火车相距70千米。例3。两列火车从甲、乙两地同时出发对面开来,第一列火车每小时行驶60千米,第二列火车每小时行驶55千米。两车相遇时,第一列火车比第二列火车多行了20千米。求甲、乙两地间的距离。(适于五年级程度)解:两车相遇时,两车的路程差是20千米。出现路程差的原因是两车行驶的速度不同,第一列火车每小时比第二列火车多行(60-55)千米。由此可求出两车相遇的时间,进而求出甲、乙两地间的距离。(60+55)20(6055)=115205=460(千米)答:甲、乙两地间的距离为460千米。奥数行程:追及问题的要点及解题技巧1、 多人相遇追及问题的概念及公式多人相遇追及问题,即在同一直线上,3个

17、或3个以上的对象之间的相遇追及问题.所有行程问题都是围绕这一条基本关系式展开的,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化由此还可以得到如下两条关系式:追及距离速度差追及时间追及时间追及距离速度差速度差追及距离追及时间多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解二、多次相遇追及问题的解题思路所有行程问题都是围绕这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解多次相遇与全程的关系1.两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3

18、个全程;第3次相遇,共走5个全程;,;第n次相遇,共走2n1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。即甲第1次如果走了n米,以后每次都走2n米。2.同地同向出发: 第1次相遇,共走2个全程; 第2次相遇,共走4个全程; 第3次相遇,共走6个全程; ,; 第n次相遇,共走2n个全程; 3、多人多次相遇追及的解题关键 多次相遇追及的解题关键几个全程 多人相遇追及的解题关键路程差奥数行程:追及问题例题及答案(一)例1.一条街上,一个骑车人和一个步行人相向而行,骑车人的速度是步行人的3倍,每个隔10分钟有一辆公交车超过一个行人。每个隔20分钟有一辆公交车超过一个骑车人,如果公交车从始发

19、站每隔相同的时间发一辆车,那么间隔几分钟发一辆公交车?a。10 b.8 c.6 d.4【解答】我们知道这个题目出现了2个情况,就是(1)汽车与骑自行车的人的追击问题,(2)汽车与行人的追击问题追击问题中的一个显著的公式就是路程差速度差时间我们知道这里的2个追击情况的路程差都是汽车的间隔发车距离。是相等的。因为我们要求的是关于时间所以可以将汽车的间隔距离看作单位1.那么根据追击公式(1)(v汽车v步行)=1/10(2)(v汽车3v步行)=1/20(1)3(2)=2v汽车3/10-1/20很快速的就能解得v汽车1/8答案显而易见是8例2。小明在商场的一楼要乘扶梯到二楼。扶梯方向向上,小芳则从二楼到

20、一楼.已知小明的速度是小芳的2倍。小明用了2分钟到达二楼,小芳用了8分钟到达一楼。如果我们把一个箱子放在一楼的第一个阶梯上问多长时间可以到达二楼?【解答】跟上面一题一样。这个题目也是2个行程问题的比较(1)小明跟扶梯之间是方向相同(1)(v小明v扶梯)=1/2(2)小芳跟扶梯的方向相反(2)(v小芳v扶梯)=1/8(1)-2(2)=3v扶梯1/4可见扶梯速度是1/12答案就显而易见了。总结:在多个行程问题模型存在的时候。我们利用其速度差,速度和的关系将未知的变量抵消。可以很轻松的一步求得结果!奥数行程:追及问题例题及答案(二) 例1.上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车

21、去追他,在离家4千米的地方追上小明。然后爸爸立即回家,到家后又立即回头去追小明,再追上小明的时候,离家恰好是8千米。问这时是几点几分? 【解答】先画出示意图图371如下(图371中a点表示爸爸第一次追上小明的地方,b点表示他第二次追上小明的地方)。从图371上看出,在相 同时间(从第一次追上到第二次追上)内,小明从a点到b点,行完(84=)4千米;爸爸先从a点到家,再从家到b点,行完(8+4=)12千米。可见, 爸爸的速度是小明的(124=)3倍.从而,行完同样多的路程(比如从家到a点),小明所用的时间就是爸爸的3倍。 由于小明从家出发8分钟后爸爸去追他,并且在a点追上,所以,小明从家到a点比

22、爸爸多用8分钟.这样可以算出,小明从家到a所用的时间为 8(31)3=12(分) 8(31)3x2=24(分) 例2.a、b两地间有条公路,甲从a地出发,步行到b地,乙骑摩托车从b地出发,不停地往返于a、b两地之间,他们同时出发,80分钟后两人第一次相遇,100分钟后乙第一次追上甲,问:当甲到达b地时,乙追上甲几次? 【解答】由上图容易看出:在第一次相遇与第一次追上之间,乙在10080=20(分钟)内所走的路程恰等于线段 fa的长度再加上线段ae的长度,即等于甲在(80+100)分钟内所走的路程,因此,乙的速度是甲的9倍(=18020),则bf的长为af的9倍, 所以,甲从a到b,共需走80(

23、1+9)=800(分钟),乙第一次追上甲时,所用的时间为100分钟,且与甲的路程差为一个ab全程。从第一次追上甲 时开始,乙每次追上甲的路程差就是两个ab全程,因此,追及时间也变为200分钟,所以,在甲从a到b的800分钟内,乙共有4次追上甲,即在第100分 钟,300分钟,500分钟和700分钟.奥数行程:火车过桥的要点及解题技巧一、什么是过桥问题?火车过桥问题是行程问题的一种,也有路程、速度与时间之间的数量关系,同时还涉及车长、桥长等问题。基本数量关系是火车速度时间=车长+桥长二、关于火车过桥问题的三种题型:(1)基本题型:这类问题需要注意两点:火车车长记入总路程;重点是车尾:火车与人擦肩

24、而过,即车尾离人而去.如:火车通过一条长1140米的桥梁用了50秒,火车穿过1980米的隧道用了80秒,求这列火车的速度和车长。(过桥问题)一列火车通过800米的桥需55秒,通过500米的隧道需40秒。问该列车与另一列长384、每秒钟行18米的列车迎面错车需要多少秒钟?(火车相遇)(2)错车或者超车:看哪辆车经过,路程和或差就是哪辆车的车长如:快、慢两列火车相向而行,快车的车长是50米,慢车的车长是80米,快车的速度是慢车的2倍,如果坐在慢车的人见快车驶过窗口的时间是5秒,那么,坐在快车的人见慢车驶过窗口的时间是多少?(3)综合题:用车长求出速度;虽然不知道总路程,但是可以求出某两个时刻间两人

25、或车之间的路程关系如:铁路旁有一条小路,一列长为110米的火车以每小时30千米的速度向南驶去,8点时追上向南行走的一名军人,15秒后离他而去,8点6分迎面遇到一个向北走的农民,12秒后离开这个农民.问军人与农民何时相遇?奥数行程:火车过桥的例题及答案(一)例1。一列火车长150米,每秒钟行19米.全车通过长800米的大桥,需要多少时间?【解答】列车过桥,就是从车头上桥到车尾离桥止。车尾经过的距离=车长+桥长,车尾行驶这段路程所用的时间用车长与桥长和除以车速.解:(800+150)19=50(秒)答:全车通过长800米的大桥,需要50秒。例2.一列火车长200米,以每秒8米的速度通过一条隧道,从

26、车头进洞到车尾离洞,一共用了40秒。这条隧道长多少米?【解答】先求出车长与隧道长的和,然后求出隧道长.火车从车头进洞到车尾离洞,共走车长+隧道长。这段路程是以每秒8米的速度行了40秒.解:(1)火车40秒所行路程:840=320(米)(2)隧道长度:320200=120(米)答:这条隧道长120米.例3.一列火车长119米,它以每秒15米的速度行驶,小华以每秒2米的速度从对面走来,经过几秒钟后火车从小华身边通过?【解答】本题是求火车车头与小华相遇时到车尾与小华相遇时经过的时间.依题意,必须要知道火车车头与小华相遇时,车尾与小华的距离、火车与小华的速度和。解:(1)火车与小华的速度和:15+2=

27、17(米/秒)(2)相距距离就是一个火车车长:119米(3)经过时间:11917=7(秒)答:经过7秒钟后火车从小华身边通过。奥数行程:火车过桥的例题及答案(二)例1.某列车通过250米长的隧道用25秒,通过210米的铁桥用23秒,该列车与另一列长320米,速度为每小时行64.8千米的火车错车时需要( )秒。【解答】火车过桥问题公式:(车长+桥长)/火车车速=火车过桥时间速度为每小时行64.8千米的火车,每秒的速度为18米/秒,某列车通过250米长的隧道用25秒,通过210米的铁桥用23秒,则该火车车速为:(250-210)/(25-23)=20米/秒路程差除以时间差等于火车车速。该火车车长为

28、:20*25-250=250(米)或2023210=250(米)所以该列车与另一列长320米,速度为每小时行64。8千米的火车错车时需要的时间为(320+250)/(18+20)=15(秒)例2。一列火车长160m,匀速行驶,首先用26s的时间通过甲隧道(即从车头进入口到车尾离开口为止),行驶了100km后又用16s的时间通过乙隧道,到达了某车站,总行程100。352km。求甲、乙隧道的长?【解答】设甲隧道的长度为xm那么乙隧道的长度是(100。352-100)(单位是千米!)1000x(352x)那么(x+160)/26=(352x+160)/16解出x256那么乙隧道的长度是352-256

29、=96火车过桥问题的基本公式(火车的长度+桥的长度)/时间速度例3。甲、乙两人分别沿铁轨反向而行,此时,一列火车匀速地向甲迎面驶来,列车在甲身旁开过,用了15秒,然后在乙身旁开过,用了17秒,已知两人的步行速度都是3。6千米/小时,这列火车有多长?【解答】从题意得知,甲与火车是一个相遇问题,两者行驶路程的和是火车的长.乙与火车是一个追及问题,两者行驶路程的差是火车的长,因此,先设这列火车的速度为米/秒,两人的步行速度3.6千米/小时1米/秒,所以根据甲与火车相遇计算火车的长为(15115)米,根据乙与火车追及计算火车的长为(17117)米,两种运算结果火车的长不变,列得方程为151151711

30、7解得:16故火车的长为1716117255米奥数行程:流水行船的要点及解题技巧 一、什么叫流水行船问题 船在水中航行时,除了自身的速度外,还受到水流的影响,在这种情况下计算船只的航行速度、时间和行程,研究水流速度与船只自身速度的相互作用问题,叫作流水行船问题。 二、流水行船问题中有哪三个基本量? 流水行船问题是行程问题中的一种,因此行程问题中的速度、时间、路程三个基本量之间的关系在这里也当然适用 三、流水行船问题中的三个基本量之间有何关系? 流水行船问题还有以下两个基本公式: 顺水速度=船速+水速,(1) 逆水速度=船速-水速。(2) 这里,船速是指船本身的速度,也就是在静水中单位时间里所走

31、过的路程。水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。 根据加减法互为逆运算的关系,由公式(l)可以得到: 水速=顺水速度船速, 船速=顺水速度-水速。 由公式(2)可以得到: 水速=船速逆水速度, 船速=逆水速度+水速。 这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。 另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到: 船速=(顺水速度+逆水速度)2, 水速=(顺水速度-逆水速度)2.奥数行程:流水行船的例题及答案(一)例1.一艘轮船从河的上游

32、甲港顺流到达下游的丙港,然后调头逆流向上到达中游的乙港,共用了12小时。已知这条轮船的顺流速度是逆流速度的2倍,水流速度是每小时2千米,从甲港到乙港相距18千米.则甲、丙两港间的距离为( ) a.44千米 b。48千米 c.30千米 d.36千米 【答案】a.解析:顺流速度逆流速度=2水流速度,又顺流速度=2逆流速度,可知顺流速度=4水流速度=8千米/时,逆流速度=2水流速度=4千米/时.设甲、丙两港间距离为x千米,可列方程x8+(x18)4=12解得x=44。 例2。一艘轮船在两码头之间航行。如果顺水航行需8小时,如果逆水航行需11小时。已知水速为每小时3千米,那么两码头之间的距离是多少千米

33、? a。180 b.185 c。190 d。176 【答案】d。解析:设全程为s,那么顺水速度为,逆水速度为,由(顺水速度逆水速度)/2=水速,知道=6,得出s=176。 【知识点拨】我们知道,船顺水航行时,船一方面按自己本身的速度即船速在水面上行进,同时整个水面又按水流动的速度在前进,因此船顺水航行的实际速度(简称顺水速度)就等于船速和水速的和,即: 顺水速度=船速+水速 同理:逆水速度=船速水速 可推知:船速=(顺水速度+逆水速度)/2;水速=(顺水速度逆水速度)/2奥数行程:流水行船的例题及答案(二)例1.甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲

34、港,逆水13小时到达,求船在静水中的速度和水流速度。【分析】根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出。解:顺水速度:2088=26(千米/小时)逆水速度:20813=16(千米/小时)船速:(26+16)2=21(千米/小时)水速:(2616)2=5(千米/小时)答:船在静水中的速度为每小时21千米,水流速度每小时5千米.例2。某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?【分析】要想求从乙地返

35、回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水速度.解:从甲地到乙地,顺水速度:15+3=18(千米/小时),甲乙两地路程:188=144(千米),从乙地到甲地的逆水速度:153=12(千米/小时),返回时逆行用的时间:1441212(小时)。答:从乙地返回甲地需要12小时。例3.甲、乙两港相距360千米,一轮船往返两港需35小时,逆流航行比顺流航行多花了5小时.现在有一机帆船,静水中速度是每小时12千米,这机帆船往返两港要多少小时?【分析】要求帆船往返两港的时间,就要先求出水速.由题意可以知道,轮船逆流航行与顺流航行的时间和与时间差分别是35小时与5小时,用和差问题解法可以求出逆

36、流航行和顺流航行的时间。并能进一步求出轮船的逆流速度和顺流速度。在此基础上再用和差问题解法求出水速。解:轮船逆流航行的时间:(35+5)2=20(小时),顺流航行的时间:(355)2=15(小时),轮船逆流速度:36020=18(千米/小时),顺流速度:36015=24(千米/小时),水速:(2418)2=3(千米/小时),帆船的顺流速度:12315(千米/小时),帆船的逆水速度:123=9(千米/小时),帆船往返两港所用时间:36015360924+40=64(小时)。答:机帆船往返两港要64小时.奥数行程:环形跑道的要点及解题技巧 一、什么是环形跑道问题? 环形跑道问题特殊场地行程问题之一

37、。是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。 二、在做出线段图后,反复的在每一段路程上利用: 路程和=相遇时间速度和 路程差=追及时间速度差 三、解环形跑道问题的一般方法: 环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次这个等量关系往往成为我们解决问题的关键。奥数行程:环形跑道的例题及答案(一)环形跑道问题特殊场地行程问题之一。是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对

38、题目中所描述的每一个行程状态作出正确合理的线段图进行分析。下面通过几道例题来帮助大家巩固环形跑道的相关知识。 例1.甲、乙两人从400米的环形跑道上一点a背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0。1米,那么两人第五次相遇的地点与点a沿跑道上的最短路程是多少米? 【解答】设乙的速度是x米/分0.1米/秒=6米/分8x+8x+86=4005x=1221228400=2。.。.176那么两人第五次相遇的地点与点a沿跑道上的最短路程是176米 例2.二人沿一周长400米的环形跑道均速前进,甲行一圈4分钟,乙行一圈7分钟,他们同时同地同向出发,甲走10圈,改反向出发,每次甲追上乙或迎

39、面相遇时二人都要击掌。问第十五次击掌时,甲走多长时间乙走多少路程? 【解答】甲走完10圈走了10*400=4000米他们每击掌一次,甲走一圈(画画图就会明白的),则15*400=6000米总共走了6000+4000=10000米10000/400=25分钟因为甲乙所走时间想同所以乙走了25/74001428米 例3。林玲在450米长的环形跑道上跑一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,那么他后一半路程跑了多少秒? 【解答】总共用时为450(5+4)50秒后半程用时(225-450)5+5055秒 例4。某人在360米的环形跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每

40、秒跑4米,则他后一半路程跑了多少秒? 【解答】44秒因为共花了80秒的时间(80/2)-360/2)/5+80/2=44 例5。一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇(不用解方程) 【解答】小青每分钟比小兰多跑50米一圈是400米400/50=8所以跑8分钟 例6.两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。如果同向而行,几秒后两人再次相遇 【解答】(4+3)45=315米-环形跑道的长(相遇问题求解) 315(43)=315秒-(追及问题求解) 答:315秒后两人再次相遇

41、.奥数行程:环形跑道的例题及答案(二)环形跑道问题特殊场地行程问题之一。是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析.下面通过几道例题来帮助大家巩固环形跑道的相关知识。 例1。甲、乙两人同时从400米的环形路跑道的一点a背向出发,8分钟后两人第三次相遇。已知甲每秒钟比乙每秒钟多行0。1米,两人第三次相遇的地点与a点沿跑道上的最短距离是( ). a.166米b。176米 c.224米d.234米 【解答】甲、乙两人三次相遇,共行了三个全程,即是3400=1200(米)。根据题意,甲乙两人

42、的速度和为1200/8=150(米/分) 因为甲乙两人的每分速度差为0。160=6(米/分),所以甲的速度为(150+6)/2=78(米/分) 甲8分钟行的路程为788=624(米),离开原点624400=224米,因为224400/2,所以400224=176(米)即为答案。 例2。乙两车同时从同一点出发,沿周长6千米的圆形跑道以相反的方向行驶。甲车每小时行驶65千米,乙车每小时行驶55千米。一旦两车迎面相遇,则乙车立刻调头;一旦甲车从后面追上乙车,则甲车立刻调头,那么两车出发后第11次相遇的地点距离点有多少米?(每一次甲车追上乙车也看作一次相遇) 【解答】第一次是一个相遇过程,相遇时间为:

43、6(65+55)=0.05小时,相遇地点距离a点:550.05=2.75千米然后乙车调头,成为追及过程,追及时间为:6(65-55)=0。6小时,乙车在此过程中走的路程为:550。6=33千米,即5圈又3千米,那么这时距离a点3-2。75=0.25千米此时甲车调头,又成为相遇过程,同样方法可计算出相遇地点距离a点0.25+2。75=3千米,然后乙车掉头,成为追及过程,根据上面的计算,乙车又要走5圈又3千米,所以此时两车又重新回到了a点,并且行驶的方向与最开始相同所以,每4次相遇为一个周期,而114=23,所以第11次相遇的地点与第3次相遇的地点是相同的,与a点的距离是3000米。奥数行程:钟面

44、行程问题的要点及解题技巧 一、什么是钟面行程问题? 钟面行程问题是研究钟面上的时针和分针关系的问题,常见的有两种:研究时针、分针成一定角度的问题,包括重合、成一条直线、成直角或成一定角度;研究有关时间误差的问题 在钟面上每针都沿顺时针方向转动,但因速度不同总是分针追赶时针,或是分针超越时针的局面,因此常见的钟面问题往往转化为追及问题来解 二、钟面问题有哪几种类型? 第一类是追及问题(注意时针分针关系的时候往往有两种情况);第二类是相遇问题(时针分针永远不会是相遇的关系,但是当时针分针与某一刻度夹角相等时,可以求出路程和);第三种就是走不准问题,这一类问题中最关键的一点:找到表与现实时间的比例关

45、系。 三、钟面问题有哪些关键问题? 确定分针与时针的初始位置; 确定分针与时针的路程差; 四、解答钟面问题有哪些基本方法? 分格方法: 时钟的钟面圆周被均匀分成60小格,每小格我们称为1分格。分针每小时走60分格,即一周;而时针只走5分格,故分针每分钟走1分格,时针每分钟走112分格。 度数方法: 从角度观点看,钟面圆周一周是360,分针每分钟转360/60度,即6,时针每分钟转360/1260度,即1/2度.奥数行程:钟面行程问题的例题及答案(一)例1:从5时整开始,经过多长时间后,时针与分针第一次成了直线? 5时整时,分针指向正上方,时针指向右下方,此时两者之间间隔为25个小格(表面上每个

46、数字之间为5个小格),如果要成直线,则分针要超过时针30个小格,所以在此时间段内,分针一共比时针多走了55个小格。由每分钟分针比时针都走11/12个小格可知,此段时间为55/(11/12)=60分钟,也就是经过60分钟时针与分针第一次成了直线。 例2:从6时整开始,经过多少分钟后,时针与分针第一次重合? 6时整时,分针指向正上方,时针指向正下方,两者之间间隔为30个小格。如果要第一次重合,也就是两者之间间隔变为0,那么分针要比时针多走30个小格,此段时间为30/(11/12)=360/11分钟。 例3:在8时多少分,时针与分针垂直? 8时整时,分针指向正上方,时针指向左下方,两者之间间隔为40

47、个小格。如果要两者垂直,有两种情况,一个是第一次垂直,此时两者间隔为15个小格(分针落后时针),也就是分针比时针多走了25个小格,此段时间为25/(11/12)=300/11分钟;另一次是第二次垂直,此时两者间隔仍为15个小格(但分针超过时针),也就是分针比时针多走了55个小格,此段时间为55/(11/12)=60分钟,时间变为9时,超过了题意的8时多少分要求,所以在8时300/11分时,分针与时针垂直. 由上面三个例题可以看出,求解此类问题(经过多少时间,分针与时间成多少夹角)时,采用上述方法是非常方便、简单、快捷的,解题过程形象易懂,结果正确率高,是一种非常好的方法.解决此类问题的一个关键

48、点就是抓住分针比时针多走了多少个小格,而不论两者分别走了多少个小格。奥数行程:钟面行程问题的例题及答案(二)例1:从9点整开始,经过多少分,在几点钟,时针与分针第一次成直线?9时整时,分针指向正上方,时针指向正右方,两者之间间隔为45个小格。如果要第一次成直线,也就是两者之间间隔变为30个小格,那么分针要比时针多走15个小格,此段时间为15/(11/12)=180/11分钟.例2:一个指在九点钟的时钟,分针追上时针需要多少分钟?9时整时,分针指向正上方,时针指向正右方,两者之间间隔为45个小格。如果要分针追上时针,也就是两者之间间隔变为0个小格,那么分针要比时针多走45个小格,此段时间为45/(11/12)=540/11分钟。例3:时钟的分针和时针现在恰好重合,那么经过多少分钟可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论