




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第12练函数的零点关键抓住破题题眼内容精要该部分内容是近几年高考命题的一个热点,其主要考查点有两个方面:一是函数零点所在区间、零点个数的判断以及由函数零点的个数或取值范围求解参数的取值范围问题,考查形式多为选择题或填空题题型一函数零点所在区间问题例1函数f(x)ln 的零点所在的大致区间是()A(1,2) B(2,3)C(3,4) D(1,2)与(2,3)破题切入点确定函数在区间端点处函数值的符号是否相反,根据零点存在性定理判断零点所在区间答案B解析f(x)ln ln(x1),函数的定义域为(1,)当1x2时,ln(x1)0,所以f(x)0,故函数在(1,2)上没有零点f(2)ln 110,f
2、(3)ln 2,因为22.828,所以e,故 ln eln ,即1ln 8,所以2ln 8,即f(3)0,f(4)ln 3ln 30.根据零点存在性定理,可知函数f(x)在(2,3)上必存在零点,故选B.题型二函数零点个数问题例2已知f(x1)f(x1),f(x)f(x2),方程f(x)0在0,1内有且只有一个根x,则f(x)0在区间0,2 014内根的个数为()A1 006 B1 007 C2 013 D2 014破题切入点由条件推出f(x)是周期等于2的周期函数,且关于直线x1对称根据f()0,可得f()0,从而得到函数f(x)在一个周期内的零点个数,最后得到f(x)0在区间0,2 014
3、内根的个数答案D解析由f(x1)f(x1),可知f(x2)f(x),所以函数f(x)的周期是2.由f(x)f(x2),可知函数f(x)关于直线x1对称,因为函数f(x)0在0,1内有且只有一个根x,所以函数f(x)0在区间0,2 014内根的个数为2 014,故选D.题型三由函数零点求参数范围问题例3函数f(x)是定义在R上的偶函数,且满足f(x2)f(x)当x0,1时,f(x)2x.若在区间2,3上方程ax2af(x)0恰有四个不相等的实数根,则实数a的取值范围是_破题切入点由条件得出函数性质,准确画出图象,结合图象解决答案a解析由f(x2)f(x)得函数的周期是2.由ax2af(x)0得f
4、(x)ax2a,设yf(x),yax2a,作出函数yf(x),yax2a的图象,如图,要使方程ax2af(x)0恰有四个不相等的实数根,则直线yax2aa(x2)的斜率满足kAHakAG,由题意可知,G(1,2),H(3,2),A(2,0),所以kAH,kAG,所以a0,f(2)4sin 52,由于52,所以sin 50,故f(2)0,则函数在0,2上存在零点;由于f(1)4sin(1)10,而f(2)0,所以函数在2,4上存在零点选A.3定义在R上的奇函数f(x),当x0时,f(x)则关于x的函数F(x)f(x)a(0a1)的所有零点之和为()A12a B2a1C12a D2a1答案A解析当
5、0x1时,f(x)0.由F(x)f(x)a0,画出函数yf(x)与ya的图象如图函数F(x)f(x)a有5个零点当1x0时,0x1,所以f(x)log0.5(x1)log2(1x),即f(x)log2(1x),1x0.由f(x)log2(1x)a,解得x12a,因为函数f(x)为奇函数,所以函数F(x)f(x)a(0a0时,由f(x)0,即ln(x2x1)0,得x2x11,解得x0(舍去)或x1.当x0时,f(x)exx2,f(x)ex10,所以函数f(x)在(,0上单调递减而f(0)e00210,故函数f(x)在(2,0)上有且只有一个零点综上,函数f(x)只有两个零点5(2014课标全国)
6、已知函数f(x)ax33x21,若f(x)存在唯一的零点x0,且x00,则a的取值范围是()A(2,) B(,2)C(1,) D(,1)答案B解析f(x)3ax26x,当a3时,f(x)9x26x3x(3x2),则当x(,0)时,f(x)0;x(0,)时,f(x)0,注意f(0)1,f()0,则f(x)的大致图象如图1所示不符合题意,排除A、C. 图1当a时,f(x)4x26x2x(2x3),则当x(,)时,f(x)0,x(0,)时,f(x)0时,有3个零点;当k0时,有4个零点;当k0时,f(f(x)1,综合图(1)分析,则f(x)t1(,)或f(x)t2(0,1)对于f(x)t1,存在两个
7、零点x1,x2;对于f(x)t2,存在两个零点x3,x4.此时共计存在4个零点当k0,且a1),当2a3b4时,函数f(x)的零点x0(n,n1),nN*,则n_.答案2解析由于2a3b4,故f(1)loga11b1b0,而0loga21,2b(2,1),故f(2)loga22b0,因此函数必在区间(2,3)内存在零点,故n2.8方程2xx23的实数解的个数为_答案2解析方程变形为3x22x()x,令y13x2,y2()x.如图所示,由图象可知有2个交点9已知函数f(x)2ax22x3.如果函数yf(x)在区间1,1上有零点,则实数a的取值范围为_答案解析若a0,则f(x)2x3,f(x)0x
8、1,1,不合题意,故a0.下面就a0分两种情况讨论:(1)当f(1)f(1)0时,f(x)在1,1上至少有一个零点,即(2a5)(2a1)0,解得a.(2)当f(1)f(1)0时,f(x)在1,1上有零点的条件是解得a.综上,实数a的取值范围为.10(2014天津)已知函数f(x)若函数yf(x)a|x|恰有4个零点,则实数a的取值范围为_答案1a0)当a2时,函数f(x)的图象与函数y1a|x|的图象有3个交点故a2.当ya|x|(x0)与y|x25x4|相切时,在整个定义域内,f(x)的图象与y1a|x|的图象有5个交点,此时,由得x2(5a)x40.由0得(5a)2160,解得a1,或a
9、9(舍去),则当1a2时,两个函数图象有4个交点故实数a的取值范围是1a1,h(x)e3x3aex,x0,ln 2,求h(x)的极小值;(3)设F(x)2f(x)3x2kx(kR),若函数F(x)存在两个零点m,n(0m0,2x2,当且仅当x时等号成立故(2x)min2,所以a2.(2)由(1)知,1a2.令ext,则t1,2,则h(t)t33at.h(t)3t23a3(t)(t)由h(t)0,得t或t(舍去),a(1,2,1,2,若1t,则h(t)0,h(t)单调递减;若0,h(t)单调递增故当t时,h(t)取得极小值,极小值为h()a3a2a.(3)设F(x)在(x0,F(x0)的切线平行
10、于x轴,其中F(x)2ln xx2kx.结合题意,有得2ln (mn)(mn)k(mn)所以k2x0.由得k2x0.所以ln .设u(0,1),式变为ln u0(u(0,1)设yln u(u(0,1),y0,所以函数yln u在(0,1)上单调递增,因此,yy|u10,即ln u0.也就是,ln ,此式与矛盾所以F(x)在(x0,F(x0)处的切线不能平行于x轴12(2014四川)已知函数f(x)exax2bx1,其中a,bR,e2.718 28为自然对数的底数(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间0,1上的最小值;(2)若f(1)0,函数f(x)在区间(0,1)内有零点
11、,证明:e2a1.(1)解由f(x)exax2bx1,有g(x)f(x)ex2axb.所以g(x)ex2a.因此,当x0,1时,g(x)12a,e2a当a时,g(x)0,所以g(x)在0,1上单调递增,因此g(x)在0,1上的最小值是g(0)1b;当a时,g(x)0,所以g(x)在0,1上单调递减,因此g(x)在0,1上的最小值是g(1)e2ab;当a时,令g(x)0得xln(2a)(0,1),所以函数g(x)在区间0,ln(2a)上单调递减,在区间(ln(2a),1上单调递增于是,g(x)在0,1上的最小值是g(ln(2a)2a2aln(2a)b.综上所述,当a时,g(x)在0,1上的最小值是g(0)1b;当a时,g(x)在0,1上的最小值是g(ln(2a)2a2aln(2a)b;当a时,g(x)在0,1上的最小值是g(1)e2ab.(2)证明设x0为f(x)在区间(0,1)内的一个零点,则由f(0)f(x0)0可知f(x)在区间(0,x0)上不可能单调递增,也不可能单调递减则g(x)不可能恒为正,也不可能恒为负故g(x)在区间(0,x0)内存在零点x1.同理,g(x)在区间(x0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新解读《CB-T 3915 - 1999船用交流电动起货绞车控制设备技术条件》新解读
- 物理●海南卷丨2022年海南省普通高中学业水平选择性考试高考物理真题试卷及答案
- 质量管理机构及职责
- DBJ04-T262-2025 《城市道路绿化养护管理标准》
- 工业氢、燃料氢、高纯氢、食品氢产品指标
- 【结算管理】钢筋精管优化手册(一)
- 地铁监理安全管理制度
- 华为销售团队管理制度
- 地质博物馆矿物晶体类和特色矿物类展品采购
- 物理中考一轮复习教案 第二讲 温度的测量、汽化和液化
- 避免实验室交叉污染的措施试题及答案
- 宇宙射线对航天员影响-全面剖析
- 医务人员职业道德规范
- ZYJ电液转辙机机械故障处理信号基础设备课件
- 福建事业单位考试心理健康教育试题及答案
- 2025年新高考“八省联考”语文试题及参考答案解析版
- 室内装修施工方案范文
- 电梯安全宣传
- 银币收藏与投资指南
- 2025年贵州安顺市黄果树旅游集团股份有限公司招聘笔试参考题库附带答案详解
- 教师轮岗申请书
评论
0/150
提交评论