数学分析课后习题答案华东师范大学版_第1页
数学分析课后习题答案华东师范大学版_第2页
数学分析课后习题答案华东师范大学版_第3页
数学分析课后习题答案华东师范大学版_第4页
数学分析课后习题答案华东师范大学版_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、. 习题P.182 验证下列等式1?Cx)?)df(x?f(x)dx?f(x)?C(f ) (1)2 (?)(xf(x)fC(x)dx?ff(x)?的一个原函数,所以. 证明 (1)因为是?C)?)?f(xdf(xC?du?u. 所以, (2)因为),y(x)(xy?fx2且通过点, 使得在曲线上每一点处的切线斜率为, 2求一曲线),5(2. 2?x?f2(x)C?2xdxf?(x)dx?xf(x)?. 由导数的几何意义, , 知所以解 2C?y?x5?,5)y(22x?所以时,”知,当, 再由条件“曲线通过点, 于是知曲线为221?x?yC2?5?1?C 从而所求曲线为 , , 解得有2x?

2、ysgnx)?|x|(?,验证. 3是在上的一个原函数 222xx?y?yyxy?y?x0?0x0x?x, , , ; 当; 当时证明 当, 时时, 220?xx?20?sgnx(x2)xxsgn?|x0?0?|x?ylim0?lim , 所以的导数为? 2x0?x?0x?0?x?x? 据理说明为什么每一个含有第一类间断点的函数都没有原函数?4?f上的每一点,I3的证明过程可知:在区间I上的导函数,它在解 由P.122推论要么是连续点,要么是第二类间断点,也就是说导函数不可能出现第一类间断点。因此每 一个含有第一类间断点的函数都没有原函数。 5求下列不定积分21421xx? 33?xx1(?x

3、?dxdx)?1?xdxxdxxdxx?3C?33 4223x. . 313141x 22?C|x|?x?)dx?x?)(x?dx?ln(x?222 3x3x11x112dx? ?C?xxdx?C?222 gg2gx2g2xxx22xx2xxx?dx9)?(42?6?(2?3)dx?2?2(2?3)?3)dx xxx92?46C? 9ln4ln6ln3331?C?dx?arcsinxdx 2222x?4?4x12211?x1x1?1?C?(1?arctanx)dx?dx?(1?)dx? 22233x?x3(1?x?)13(122?C?x?tantanxdx?(secx?1)dx?x 12x11

4、?1cos2?C?x)dx?)(1?cos2sinxxdx?dx?(x?sin2 222222xcos2xcossinx?C(cosx?sinx)dx?sinx?cosxdx?dx? xcosx?sinxcos?sinx221sin1coscos2xxx?Cx?tanx?dx?dx?(?)dx?cot 222222xxcossinx?xxsincoscossinx?tt909)(10?t2tt?9)dtdtC10?3?10(?C? 90)lnln(10?91578 ?Cdxx?x?dxxxx?88 1521?xx1?1?x1x?Cx)(?dx?dx(?2arcsin?)?dx xx1?1222

5、x?1xx?11?. . 12?Cxx?dx?(1?sin2x)dx?cos1dx?2sin2xdx(cosx?sinx) 2111?xcos2xdxcos(cos3x?cosx)dx?(sin3x?sinx)?C 32211xx?3x3xx?x?33xx?3xx?C?3e?3e?e(e?e)dx?(e?3e?3ee)dx?e 33 P.188 习题 1应用换元积分法求下列不定积分:11?dx?sin(3x?4)?C?4)cos(3xxcos(3x?4)d(3?4) 331122222xx22x?C?xedx?eed(2x) 4411)dx1d(2x?C?ln|2x?1| 22x?122x?1

6、11nnn?C(1?x)?(1?x)d1?x)?(1?x)dx 1n?11111?xd(?3)dx?)dx?32222x?x1x?3?3x?331 1xC?arcsin3x?arcsin?332?32x2x21232x?2x?3?C?C?2d(2x?23dx?) 2ln22ln233122?1?1? ?Cx)?(8?33x)?(8?x)?C3?8?3xdx?(83x)d(8?222 9333122dx?13?3?1? C5x)?(7?5x)?7?5x)?C(7?(5?(7?x)d333 102553x7?5112222?C?xsinxdxx?cosxdx?sin 22?2d)(x?dx11 4

7、?xcot(2?)C ?42222)?2sin(x)?x(sin2 44. . xdxdxdx 2?C?tan 解法一: xx2x1?cos22coscos2 22xdxcosdxdx?cosx)dx(1? 解法二: 222x1?cosxxsinxsin1?cos1xdsin?C?x?cot?cotx 2xsinxsin 解法一:利用上一题的结果,有?)2?d(xxdx1?C?C?tan(?)?tan(?x) ?221?sinx24)?x1?cos( 21cosxsinx)dxdxddx(1?C?tanx? 解法二: 222x1?sinxcosx1?sinxcoscosx解法三:dxdxdx?

8、 222x1?sin)12?2?(sinx2?cosx2)(tanxcosx2xdtan2?C?2 21xtan2?)?1(tanx2?)xx)d(22?x)dx?sec(?2?cscxdx?sec( 解法一:?C?x|lncscx?tan(cot2?x)|?C?ln|sec(?2x)? 1sinxdcosx1cosx?1?ln?cscxdx?C?dxdx 解法二: 221cosx2sinx?1cos?sinxx?ln|cscx?cotx|?C cscx(cscx?cotx)?dxcscxdx?解法三: xx?cotcsc)x?cotxd(csc?C|?csc?ln|x?cotx?C xcot

9、cscx?xsin解法四:1 2?dx?cscxdxdx xxxx2coscos2sin2sin 2222. . 1xxx?C?ln?|tan|dcot?ln|cot|?C? x222cot 211x?22?d(1?xC)?1?xdx? 222x1?1x?2x11x12?Cdx?dx?arctan? 422224x4)4?(x?xdxdln?Cln|lnx?|? xxlnxln4111?1x5?C?x)?dx?d(1? 253535105)x(1(1?x)?(1?x)31x14?dxdx? 4284?2x(x?)2 442?x?21x11C?ln|ln?|?C 4442?282x22x?dx1

10、1x?C?ln|1?x|?Cln?(?)dx?ln|x|? x1?x1?x(1?x)xcosx?dx?ln|?sinx|?Ccotxdx sinx5422?xdsin1?sinx)coscosxdx?cosxxdx?( (21) 212435?x?sinsinCx?dx)sinx?sinx?sin(1?2?x?sin 35dxd(2x)?ln|csc2x?cot2x|?C 解法一:(22) sinxcosxsin2xdxcosxdxdtanx?C?x|?ln|?tan 解法二: 2sinxcosxtanxsinxcosx22x)?xcosdx(sindx? 解法三: sinxcosxsinxc

11、osxsinxcosx?)dx?ln|sinx|?(ln|cosx|?C cosxsinx. . xxdeedxdxx?C?arctane?(23) x22x?xx1e?ee?1e?2)?8?3xx2?3d(x2?C?x?8?ln|x|?3dx?(24) 228?x?3xx?3x?82231)?1)2?(xx?2(x?dx?dx(25) 33)x?1(x?1)( 32123?C?ln|x?1?|(?)dx? 2231x?x?1)1?1)(x?1)x?2(xdx? (26) 22ax?ttanx?a 则解 令, 2tdtsecadx22?C?|a?t?ln|sec?tant|?C?ln|x?x

12、1tseca22a?xx11xdx?C?d?(27) 21223222221222)(?ax(x)?a)aaa?x(tx?atan 解法, 则2 令2x1sec1tdtdxa?C?costdt?sintC? 23323222aat?asec)a(x222axa?5x?dx (28) 2x1?t?sinx , 则 解 令55ttxsincos225?tt)?dx?cosdt?cossintdt?d(1 tcos2x1? 513121222352 C)?)(1?x?1cos?cost?Ct?(?x)?(1x?t?cos222 5335x?dx (29) 3x?11 56t?xtdxtx?66 解

13、则令, , . . 26423524x?tt1)1?1?(t?1)(t1?tt)?t?dt(?66?dtdtdx?6? 222t1?t1?1t3x?1 3751tt6t?1t264?Cln|?1)?)dt?6(?t?6(?(t)?t?t 21?2t753t?11 x?t6 其中11?x?dx (30) 1x?1?2t1?x?t1?x?tdt?2dx, , 则 , 令解4t124x?1?1t?dt)?4dt?(21(?)2dx?tdt?t(2t?)2tdt? 1t?1?1t?1tt11?x?2C1|?|x?1?ln?x?1?4x?1?4?t1?4t?4ln|t?|?C 11C1|?|x?1?x?

14、4x?1?4ln 2应用分部积分法求下列不定积分:x2?C?xxarcsinxxdx?xarcsinx?1dx?arcsin 2x1?1?dx?xlnx?x?xlnx?x?Clnxdx x222?xdx?sin2xxdsinx?xsinx?xcosxdx 22?cos2xdxcosx?xsinx?x2sinx?x2xdcosx 2sinx?2xcosx?2sinx?C?xlnx?11?1lnx11lnx1?C?dx?dx?lnxd 322322222xxxxxx42222?C?2xx(lnx)?2lnxxdx?(lnx)dxx(lnx)?2ln?x 2x11122?xx?arctanarcta

15、nxdx?xdxdxxarctan 22221?x1111122?(1?)dx?xarctanx?(xxarctan?x?arctanx)?C? 22222x?1112?1)arctanx?x?(x?C 22. . 11?dxln(ln?dx?ln(lnxx)?)dx xlnlnx11?C)?xln(lnx)?x?dx?dx?xln(lnx xlnlnxxxxarcsin222?dx)?)dx?x(arcsin(arcsinxx 2x?122?x(arcsinx)1?2?arcsinxd?x 1222?dxarcsin12?xxx?x(arcsin?x)?21 2x?122C?21?x?arc

16、sinx?x(arcsinx)2x 23?xdxxtanx?tansecxdx?secsecxdtanx?xsec 32?xdxxdx?xdx?secxtan?secx?secxtan?secsecx(sec?x1) 3?|x?sectanxdx?ln|sec?secxtanxx 13?Cx|sec?tanx|)sec?xdx?secxtanx?ln 所以 2x2222?dxxxxx?a?a?dx? 22ax?2a2222?dx?)?(x?a?xx?a 22a?x2a2222?dx?ax?dxx?x?a? 22ax?2222222?)?x?aadx?axln(?x?xx?a? 12222222

17、?C)ln(x?xax?adx?(xx?aa? 所以 2 类似地可得12222222?)?aCxxaxax?dx?(x?aln(? 2 求下列不定积分:3. . 1a?a1a?x)?Cf(x)f(x)f)(xdx?f(x)df( a?1?(x)1f?df(x)?arctanfdx?(x)?C 22)1?f(x)(x1?f?(x)df(x)f?ln|f(x)dx?|?C f(x)f(x)f(x)f(x)f(x)?Cdf(xf)(x)dx?e?ee? 4证明: 1n?1n?xtanI?I?,?n2,3dxI?tanx ,则, 若 2nn?nn?1n?22n?22n?2?dxtan?1)dx?tan

18、xx?Itandxxsecx(sec?x 证nn?2?xdtantanx?I?. 2?nn?2n?1n?2?xdtantantanxx?(ntan?2)xdtanx? 因为,1n?21n?xdtantanx?tanx. 所以 n?11n?1x?tanII. 从而 2?nnn?1mn?0n?m?dxxsinxn)?cosI(m, 若时,则当m?1n?1xmcos?1sinxI(m,n)?I(m?2,n) m?nm?nm?1n?1xcosn?xsin1?I(m,n?2)n,m?2,3,? , m?nm?n1m?1nmn?1?xd?sincosxdx,I(mn)?cosxsinx 证 n?11m?1

19、n?1m?2n?2?xdxcosxsinx)x?(m?1sin?cos n?11m?1n?1m?2n2?x)cosdxxsincos?xxsin)(x?m?1(cos1 n?11m?1n?1x?(m?1)(I(m?2?cossinx,n)?I(m,n) n?1. . 1?1nm?1xsin?xcosm?n)I2,n)(m,?I(m?所以 , nm?nm?1m?1n?1sincosxn?x?(m,n)?I(m,n2)I同理可得 nm?nm? P.199 习题 1求下列不定积分:331?1x?x12?dx)dx?dx?1(x?x 1?x1xx?123xxC?1|?x?ln|x 232)x?4x?2

20、21(?Clndx?(?)dx?解法一: 2|?3xx?4x?3|12x?x?7 解法二:371x?212x?dx?dxdx 2222212?12?xx?7x12?7xx?7x271?7x?121d)(x3?)d(x? 17222212x?x?72?)(x 42413x?2C12?|?ln|xln?7?x? 3?22xC?1ABx1? 解 223x1?x?x(1?x)(?1x?)?x1?x12)?C)(1?xx1?A(1?x)?(Bx 去分母得 33C?21A?1x?0?C?x1?A比较上式两端二,于是. ,得再令,得令. 3?1B0?A?B ,从而,因此次幂的系数得 2?1dx1xdx?dx

21、? 233x31?xx?11x?. . 1x?11112?dxdx|?ln|1?x? 22236x11?x?x?x?11112?dx?)?ln|1?x|?ln(1?x?x 226343)?(x?1221?12x1(1?x)C?ln?arctan 26x1?x?33222211)?(xx?1)11?xdx1(1?x?dx?dxdx? 解 4444222x1?1x1?x1?x1111?11)d(x?)d(?x 111122xxxx?dx?dx? 111122222222?x?xx?x? 2222xxxx11)?(x?)dd(x11 xx? 1122222?)?2(x?(x?) xx11x?2x 1

22、1xx?C?lnarctan? 1242222?x?x22?2x?1?12x2x?arctan?ln?C 4822xx?2x?1dx? 22)?1)(x1(x?1ABx?CDx?E?, 解得 解 令 222221?x)?x(?x?1)1x1?(x1)(111B?C?D?AE?, 于是, , 442dx1dx1x?11x?1?dx?dx? 222222414x?)(x?)?x1?x)(1(?1x1. . x1111112?1)?arctanx?x?(arctanx?)?Cln|x?1|?ln( 2244448x?x1?11|x?1|1?x(ln?2arctan?x?)?C 24x?12x?1x?

23、214x?251?dx?dx?dx 22222242(2x?2x?1)x?1)?1)(2x?2(2xx?22?2x?1)2d(2x14x?dx? 其中 22222(2x?2x?1)(2x?2x?1)2x?2x?1141?d(22x?1)dx?dx? 222222?)1x2x(?2x?1)2(2x?1)?11(2x?1?arctan(2x?1)I的递推公式. P.193关于P.186 例9或 参见教材 k2(2x?1)?1于是,有 x?21152x?15?C)?2x?1dx?arctan( 22222241?1?1)(?2x?1)22xx?2x(2x5x?35?arctan(2x?1)?C 22

24、)12x?2(2x?2求下列不定积分 dx? x5?3cosxtan?t 令,则解 2dxdx2dtdt1d(2t)1?C?arctan2t? 22222x2?53cos1?t1?t1?4t?1(2t)5?3 2t?11xarctan(2tan?)?C 22dxdxdxdtanx? 222222)323cos?2sinx2x?sinx(?tanx32(cos)x?tanx. . 3()dtanx3112?C)x?arctan(tan 32662)x(1?tan 2xcos?sinx?xdx1cosx?sinxdxcos?dx? xcosx?1?tanxcosx?sinx2sin)x?cos?1

25、?sinxcosx1d(sinx?)?(1)dx?(?dx xsinx2cosx?sin2cosx?1C?(x?ln|cosxsinx|)? 2xdxcosxdxsin?I?I ,另解:设 21xx?sinxcosx?sincosxx?sincos?Cx?I?dx?I 则, 21xsincosx?)(cosx?sinxcosx?sinxd?C?x|dx?ln?|cosx?II?sin 21x?sincosx?sinxcosx1dx?C|cosx?sin?x|)x?I?(?ln 所以 12x?tan12dx)(xx?12?1?x?xdxdx? 22xx?x?x1?1?dx1(?2x?1)3dx2

26、?dx?1?x?x? 2222x?1x?1x?x 7的结果)其中(利用教材P.185例51152x?11222?x)?1?x?)dx?arcsin?(?1x?xdx?xx?( 4224252)?2x?x(1)?1dx?xd(2?2?1?xx? 22xx1?1x?xdx1?dx2x?arcsin? 1552xx?1?2)?(?x24所以有 . . 2x?dx 2xx?11?512x?11132x22Carcsin2?1?xx?x?arcsin(x?)1?x 22224553x?72x?122C?arcsin?1x?x? 4851)?d(x1dx 22?Cx|?ln|x?x? 2112xx?2?)

27、(x42x11?dx 2x1?x2x1?t1?tdt?4?t?x?dx ,代入原式得,则解 令 222x?1)t(1?t?12222?11?t?4t?11?tx1?4?t?dt?4?tdt?dt?dx? ? 22222222x1?)t)1?t1?(1?(1x?tt)?211111?dt4?dt?4dt?4dt? 2222222t1?t1(1(1?t)?t1?t)(1?t)?11?t1111?C?dt?2ln|?dt? 222tt1?1?t1)1?tt(1?t)(1?22x?1?x?11C?ln| xx 题 练 习 总 求下列不定积分:11151333x?14x?2244? ?Cx?x?)x?d

28、x(x2?xdxx44124412 35134x. . 111222?dx?xarcsinxdx?xarcsinx?xarcsinxdx 222x1?2212tsinx1t1?cos?)2tdt?(t?sindx?costdt? 其中 222cost2x?112)x(arcsinx?x1? 21122?dxxxarcsinxarcsinx?xdx所以 22x1?1122C)x1?x?x?arcsinx(arcsinx? 2211122Cx1?x?x?arcsinx?arcsinx? 424dx? x?1u?xudu2dx? ,则令 解 1dx2udu?C?u|)?ln|1?21(?)du?2(

29、u? u1?1?ux?1C?|1x|)?2(x?ln xsinsinxsinxsinx?de?2xsinx?2esinxdsineesin2xdx?2sinxcosxdx xsinsinsinxsinxxsinx?C(sinxe?e1?dsinx)2(e)?sinxe?2)?C2?(e?sinx? xuuux?C?(x?1e?2()u?eC)?2e?edx(令xu)edu2u 1dxdx11?C?arcsin?d()? xx1121?xx2?1x1?22xxtsecx? ,解法二:令dxsecttant1?dt?t?C?arccos?C xttantsec21?xx. . )sinxd(cos

30、x?1?tanxcosx?sinx?dxdx? xsincosxtanx?cosx?sinx1?C?sinx|?lncosx ?xtan1?C?)|)dx?ln|cos(?xdx?tan(?x 4?tanx4122132)?)2?3(xx?x(x?2?C?ln|x?2|dx?dx 3322?x)x?x?2)2x(?2)(1dxdx322?Cx?x?tandx?(1?tanx)tanx?tan?sec 423xxcoscosxcos21?2422?dx(x)dx?sinxdx?)(sin 2xcos4111?2?dx)2cos2x2x)dx?(1?(1?2cos2x?cos 24411sin4x31xC4?sinx?C?x?sin2xsin?(x?2x?) 32288445x?dx 234?3x?x5?5xx?dxdx? 解 223)2x?1)(xx?3x?4?(C5ABx? 令 2221x?x?)?2(x?2)x(x?1)(2)1?C(x(x?1)(x?2)?x5?A(x?2?B 去分母得:22?B?A1?C? ,解得: 3311215x?2?dx?dx?dxdx? 所以 232213?3xx?)2x3?x4?(x122x?

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论