




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.高中数学必修5 知识点1、正弦定理:在c 中, a 、 b 、 c 分别为角、 c 的对边, r 为c 的外接圆的半径,则有abc2r sinsinsin c2、正弦定理的变形公式:a2rsin, b2rsin, c2rsin c ; sina, sinbc;2r, sin c2r2ra : b : csin:sin:sin c ;a bcabcsinsinsin csinsinsin c3、三角形面积公式:sc1 bcsin1 ab sin c1 acsin2224、余弦定理:在c 中,有 a2b2c22bc cos, b2a2c22ac cos,c2a2b22ab cosc 5、余弦定理
2、的推论: cosb2c2a2, cosa2c2b2, cosca2b2c22bc2ac2ab6、设 a 、 b 、 c 是c 的角、c 的对边,则:若a2b2c2 ,则 c90o ;若 a2b2c2 ,则 c90o ;若 a2b2c2 ,则 c90o 7 、数列:按照一定顺序排列着的一列数8 、数列的项:数列中的每一个数9 、有穷数列:项数有限的数列10 、无穷数列:项数无限的数列11 、递增数列:从第 2 项起,每一项都不小于它的前一项的数列12 、递减数列:从第 2 项起,每一项都不大于它的前一项的数列13 、常数列:各项相等的数列14 、摆动数列:从第 2 项起,有些项大于它的前一项,有
3、些项小于它的前一项的数列15 、数列的通项公式:表示数列an 的第 n 项与序号 n 之间的关系的公式可编辑.16 、数列的递推公式:表示任一项an 与它的前一项an 1 (或前几项)间的关系的公式17 、如果一个数列从第2 项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差18、由三个数 a , b 组成的等差数列可以看成最简单的等差数列,则称为 a 与 b 的等差中项若 bacc 的等差中项2,则称 b 为 a 与19、若等差数列an的首项是 a1 ,公差是 d ,则 an a1n1 d 20aanm d; aan1 d; dana1、通项公式的
4、变形:;nm1nn1nana1; danam d1nm21、若 a是等差数列,且 mnpq ( m 、 n 、 p 、 q* ),则 amanapaq ;n若 an是等差数列,且2n pq ( n 、 p 、 q),则 2anapaq *n 项和的公式:snn a1 an; sn na1n n122、等差数列的前22d 23、等差数列的前n 项和的性质:若项数为2n n*,则 s2nn anan 1,且ss奇nd,s奇an偶s偶an 1若项数为 2n 1 n*,则 s2n1 a ,且 s奇s偶an , s奇n(其中2 n 1ns偶n1s奇na n , s偶n 1 an )24 、如果一个数列从
5、第2 项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比25、在 a 与b中间插入一个数ggbg称为 a 与b的等比中项 若,使 a , 成等比数列, 则g 2ab ,则称 g 为 a 与 b 的等比中项26、若等比数列a 的首项是 a1 ,公比是 q ,则 an a1qn 1n可编辑.27 、通项公式的变形:anamqn m ; aa qn 1; q n1a n;1na 1qn ma na m28 、若 an是等比数列,且mnpq ( m 、 n 、 p 、 q* ),则 amanapaq ;若 an是等比数列,且2npq ( n 、 p 、 q*
6、 ),则 an2apaq na1q129 、等比数列an的前 n 项和的公式:sna1qna1an q1q 11q1q30 、等比数列的前n 项和的性质:若项数为2n n* ,则 s偶q s奇 smsq nsnnm sn , s2nsn , s3ns2 n 成等比数列31 、 a b0 a b ; a b0 a b ; a b 0 a b 32 、不等式的性质: abba ; ab, bcac ; abac bc ; ab, c0acbc , ab, c0acbc ; ab, cdacbd ; a b 0, c d 0ac bd ; a b0anbn n,n1 ; a b 0n an b n,
7、 n1 33 、一元二次不等式:只含有一个未知数,并且未知数的最高次数是2 的不等式34 、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式b24ac000二次函数 yax2bxca 0 的图象可编辑.有两个相异实数根一元二次方程 ax 2bxc0b有两个相等实数根x1,2b没有实数根a 0 的根2ax1 x22ax1x2ax2bxc0x xx1或 xx2x xb一元二次r2aa0不等式的ax2bxc0x x1 xx2解集a035 、二元一次不等式:含有两个未知数,并且未知数的次数是1的不等式36 、二元一次不等式组:由几个二元一次不等式组成的不等式组37、二元一次不等式
8、(组)的解集:满足二元一次不等式组的x 和 y 的取值构成有序数对x, y ,所有这样的有序数对x, y 构成的集合38、在平面直角坐标系中,已知直线xyc 0,坐标平面内的点x0 , y0 若0,x0y0c0 ,则点x0, y0在直线xyc0 的上方若0,x0y0c0 ,则点x0, y0在直线xyc0 的下方39 、在平面直角坐标系中,已知直线xyc0若0 ,则xyc0 表示直线xyc0上方的区域;xyc0 表示直线xyc0下方的区域若0 ,则xyc0 表示直线xyc0下方的区域;xyc0 表示直线xyc0上方的区域40 、线性约束条件:由x , y 的不等式(或方程)组成的不等式组,是x , y 的线性约束条件目标函数:欲达到最大值或最小值所涉及的变量x , y 的解析式可编辑.线性目标函数:目标函数为x , y 的一次解析式线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题可行解:满足线性约束条件的解x, y 可行域:所有可行解组成的集合最优解:使目标函数取得最大值或最小值的可行解abab 称为正数 a 、 b 的41 、设 a 、 b 是两个正数,则称为正数 a 、 b 的算术平均数,2几何平均数42 、均值不等式定理:若 a0 , b0,则 ab 2abab ab ,即243 、常用的基本不等式: a2b22ab a,br ; aba2b
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设备生命周期管理-第5篇-洞察及研究
- 医养结合养老机构2025年市场拓展与品牌建设策略报告
- 2025年房地产市场区域分化与养老地产投资策略研究报告
- 戴尔企业简称2023年度ESG综合报告:员工成长与企业可持续性
- EFG医用影像设备2021-2022实践报告:供应商ESG提升路径
- 交换门面房协议合同模板
- 三方协议上提供住宿合同
- 专利年费代缴合同范本
- 化妆师合作协议合同范本
- 化妆品工厂转让协议合同
- 语“你相遇”文启新程-2025年秋季高一语文开学第一课-2025-2026学年高中主题班会
- 个性化教育实施策略
- 2025年安全生产考试题库(安全知识)安全培训课程试题
- 试述ABC库存管理办法
- 13.2+磁感应强度+磁通量+课件-2024-2025学年高二上学期物理人教版(2019)必修第三册
- 急诊科护理月质量分析
- 糖尿病病人饮食健康宣教
- 结肠癌围手术期管理
- 儿童健康开学第一课-守护成长,从健康开始
- 2025秋统编版(2024)道德与法治二年级上册教学计划
- 寿险财务流程管理办法
评论
0/150
提交评论