




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、v1.0可编辑可修改说题稿实验中学徐顺从原题已知:如图,AD垂直平分BC D为垂足,DMLAC, DNLAB, M N分别 为垂足,求证:DM=DN一、说背景与价值本题选自八年级上第一章三角形的初步知识之三角形全等的判定4的 课内练习2。解决此题涉及的知识有垂直的定义,垂直平分线的定义及性质, 三角形全等的判定,角平分线的性质,三角形的面积等。本习题是在学生学习三角形全等的判定定理 “ AAS,及角平分线的性质的基 础上给出的。课本设置此练习的目的旨在巩固三角形全等的判定及角平分线的性 质。大部分学生想到利用三角形全等,然而解题的方法较多,需要学生发散思维, 充分联系已知与求证,综合运用已学的
2、知识来解决,在众多的方法中进行选优, 从而获得一定的解题经验。二、说教学与改进学生已经学会了三角形全等的判定定理“ SSS,“SAS,“ASA,“AAS , 对于证明相等的线段,基本上具备了解决此题的知识储备和技能。而学生往往会 思维定势,联想到证明三角形全等,而忽视了此时证明的是垂线段这个重要信息, 缺乏相应的想象。学生可能的做法:1、先证明 ADC? ADB得/ B=Z C,再证明 DCM DBN 得到 DM=DN2、先证明 ADC? ADB得/ CAD=/ BAD 再证明 DAM DAN 得到 DM=DN3、 先证明 ADC? ADB得AD是角平分线,再利用角平分线的性质,得到DM=DN
3、4、先由中垂线的性质证明 AB=AC再由三角形的中线将三角形的面积二等分,得 S adb Sadc,由 DML AC DNL AB,得到 DM=DN在原先的教学中,让学生思考后回答,发现大部分学生是第1,2种解法,很 少出现第3,4的解法,然后再追问,还有其他的方法吗能利用今天学过的知识 来解决吗能利用角平分线的性质吗终于有了第3种方法,可是学生缺乏想象,这样的教学效果不好。针对很少学生想出方法3,方法4,以及充分发挥这道题目的价值,我在第二节课时对教学进行了如下的改进。 首先是讲解角平分线的性质时做好铺垫, 在 讲解角平分线时,引导学生理解角平分线上的点到角两边的距离相等,这个距离指的是垂线
4、段的长度。以及应用角平分线性质时具备 3个条件:角平分线,两条 垂线段。其次在讲解时让学生说出各自的解法,当大部分学生出现前两种方法时, 进行如下的引导启发。引导关注条件,所求证的DM=D,与它相关的条件是什么DhLAC DNLAB发现所证明的两条线段与众不同,它们是垂线段,再启发学生 对垂线段展开联想。由“垂线段”能联想到什么这时学生积极思考,而且有有惊 喜。有了刚才的铺垫和现在的启发,有学生联想到了刚学过的角平分线的性质。问题转化为证明AD是/ BAC勺平分线。惊喜的是有的学生在启发引导下,由垂 线段联想到了三角形的高,进而联想到三角形的面积。由中线将三角形的面积二 等分得S adb Sa
5、dc,要证DM=D,只需证明AB=AC通过此题,有什么收获对于这几种方法,你喜欢哪一种最欣赏哪一种师生共 同提炼:1、证明相等的线段,一般可通过证明两条线段所在的三角形全等。2、对于证明垂线段相等时,可联想到角平分线的性质或利用三角形面积等。3、对解题方法进行比较,让学生从中选优,体现最优化思想。有些学生喜欢利用三角形全等,因为他最拿手,有些学生喜欢利用角平分线 的性质,因为它最直接,有些学生喜欢利用等积法,因为解法巧妙,而在几何教学中我们也经常利用等积法,如可由面积相等这个等量关系来解决问题, 也可以 利用面积相等进行等积变形,改变图形的形状以便于求解,是个非常巧妙的方法。 所以我对此进行有
6、关计算,推理的拓展与命题。设计意图:让学生养成解题后反思的习惯, 促进学生会反思,形成一定的解题经 验,让学生选优体现解题方法的优化。三、说拓展与命题拓展1 已知在Rt ABD中, AD=4 BD=3 DNLAB, N为垂足,则DN=设计意图:在原题的基础上拓展,渗透等积法。拓展2 已知:如图,在 ABC中, AB=AC=5BC=6 D为边BC上一点,DML AQDN!AB M N分别为垂足,随着点 D在线段上运动,DM+D的值是否发生改变; 若改变,说出变化的情况,若不改变,求出它的值。在原题的基础上改变点D的位置,还是在BC上,但是动点,判断这两条垂线段的和会不会改变此时学生很难想到通过三
7、角形的全等, 但会“截长补短”的 学生可能会解决;而利用等积法来解决,是非常巧妙的做法。实质上所求的垂线 段的和就是一腰上的高。设计意图:改变条件,使原来的点变成边上的动点,此时学生很难想到通过 三角形的全等来解决问题,而利用等积法来解决,从而发展学生解决问题的能 力。.拓展3某数学兴趣小组组织了以等积变形”为的主题的课题研究。第1小组发现:如图(1),点A、点B在直线li上,点C、点D在直线*上,若I I则 SABC=SABD ;反之,若S, ABC=S.ABD则 J I2.6第2小组发现:k如图(2),点P是反比例函数y二-上任意一点,过点PX作x轴、y轴的垂线,垂足为 M、N,则矩形OM
8、PN的面积为定值|k 请利用上述结论解决下列问题:(1)如图(3),点C D是半圆上的三等分点,圆O的半径是2,则阴影部分的面积是(2)如图(4),四边形 ABCD是正方形,圆A的半径是 2,交边 AD于点 E,则S CEF(3)如图(5),点A,B在反比例函数y-的图象上,则S OABX第一小组讨论的问题是常见的“同底等高”的两个三角形面积相等,反之成 立,类似的有“等底同高”,“等底等高”。第二小组讨论的问题是反比例函数的几何意义,图象上的点与坐标轴围成的 矩形面积不变。3小题考查等积变形,第1题在圆中求不规则图形面积,已经具有平行线,学生容易想到利用等积变形,将阴影图形转化为扇形;第2题
9、求三角形面积,没 有平行线,需要利用正方形对角线构造平行线,将 S CEF转化为Saef,此题也可 运用割补法,等积变形显然更巧妙。第3题是求直角坐标系中斜放的三角形面积, 利用反比例函数的几何意义,S aoc S BOD,则S AOE S四边形CDBE 可将斜放的三 角形等积变形为直角梯形,直接利用坐标的意义求解,体现出等积法的优越性。设计意图:将等积法进行研究,了解基本图形,渗透等积法,体验等积法的巧妙。拓展4如图, ABC的顶点坐标分别为A (- 6,0),B (4,0),C (0, 8), 把厶ABC沿直线BC翻折,点A的对应点为D,抛物线y二ax2- 10ax+c经 过点C,顶点M在
10、直线BC上.(1) 证明四边形ABCD 是菱 形,并求点D的坐标;(10,8)2(2) 求抛物线的对称轴和函数表达式;(直线x=5,函数表达式为y= 5x2- 4x+8 )5(3) 在抛物线上是否存在点P,使得 PBD与APCD的面积相等? 若存在,直接写出点P的坐标;若不存在,请说明理由.M考查动点产生的面积问题。由三角形面积相等,联想到“同底等高”,“等底 同高”,“等底等高”。“同底等高”两个三角形可以以PD为底,则点P是BC的平 行线与图象的交点;“等底同高”不存在;“等底等高”第一小题证明的菱形ABCD CD=BD可以分别以它们为底,等高联想到了/ BDC勺平分线,则点P是/ BDC 的平分线与图象的交点。设计意图:通过此题,即联系了原题,又对原题中拓展的方法进行综合应用。命题说明:拓展1预计难度值,属于a级题,实测;拓展2预计难度值,属于b级题,实测,据了解部分学生对等积法不够了解;拓展3第1小题预计难度值,属于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公路客运企业信息化建设与业务流程优化考核试卷
- 海洋油气开发工程技术在极地环境的应用考核试卷
- 玻璃医疗器械无菌包装考核试卷
- 肉制品加工业的消费者产品调研考核试卷
- 建筑装饰设计师与职业发展考核试卷
- 水电工程BIM技术应用与协同管理考核试卷
- 砼构件预制件的市场需求预测考核试卷
- 辽宁师范大学《阿拉伯语语法》2023-2024学年第二学期期末试卷
- 泉州医学高等专科学校《护理礼仪(实验)》2023-2024学年第二学期期末试卷
- 秦皇岛职业技术学院《CPC程序设计竞赛算法设计》2023-2024学年第二学期期末试卷
- 施工方案大全公路
- 中国血脂管理指南(2023-年版)解读
- 重视心血管-肾脏-代谢综合征(CKM)
- 区块链跨境支付的监管框架研究
- 甲方对监理评价表-副本
- 新疆普通高校招生网上填报志愿草表
- 畜禽生物质沼气发电项目环境影响报告
- DB12-T 1233-2023 政务信息资源共享政务信息资源目录编码规范
- 2023年公路水运交安ABC考试题库及答案
- 絮凝剂原理综合讲义
- 配电室安全检查表
评论
0/150
提交评论