健康监测在桥梁工程中的应用_第1页
健康监测在桥梁工程中的应用_第2页
健康监测在桥梁工程中的应用_第3页
健康监测在桥梁工程中的应用_第4页
健康监测在桥梁工程中的应用_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、健康 监测在桥梁工程中的 应用中国桥梁建设取得的成就作为四大文明古国的 一员,中国有着极其悠久和灿烂的文化。 在桥梁工程领域,我国在周秦时期,梁索浮三种桥型就已经基本具备;两汉时期,以栈桥建设为主;隋唐时期,技术日益成熟,达到飞跃;两宋时期,全面开展,大规模进行;元明清时期,日趋鼎盛,清朝中后期技术开始落后。与同期世界水平相比,我国在相当长的历史时间内一直处于世界先进水平,建造了无数的各式桥梁,并有大量的优秀作品传世至今。世界后代的桥梁建筑有着十分深远的影响 。它横跨于赵县洨河之上, 分流用小拱的敞肩单孔弧形石桥,由 28 道石拱券纵向并列砌筑而成 自古有“奇巧固护,甲于天下”的美称, 世界第

2、十二处“国际土木工程历史古迹其建筑结构之奇特,木工程师学会选定为誉的安平桥建于 世界上最长的石梁桥是我国最长的石梁桥,也是 沟桥;在世界造桥史上开创 蛎固基的洛阳桥(又称万安桥 );跨径达到 103 米的泸定桥;作为中国 座开关活动式大石桥的广济桥等等。800 多年前的南宋时期,全长两千多米,不仅。另外还有位列中国三大古代名桥之首卢性采用筏型基础及种乃至世界上最早的一始建于公元 605616 年的赵州桥,不仅是我国而 且也是世界上现存最早、保存最 完整 的空腹式石拱桥,对 是一座大拱两端叠加1991 年,赵州桥被美国土 。有着“世上无桥长 此桥”美时值近代钱塘江大桥 ,武汉长江大桥,南京长江大

3、桥吹响了我 国向现代化桥梁大国进 军的号角。据不完全 统计,截止 2009 年底,我国已建成公路、 铁路、公铁两用桥梁总数已 达 60 余万座,仅在长江、黄河上就有 250 余座。其中,长江及 其支流沱沱河、通天河、 金沙江上有近 130 座 ,黄河上有 120 余座。在已建成的斜拉桥、悬索桥、拱桥、梁桥中, 分别位居世界同类型 桥梁跨径排行榜前十名之列的有 24 座,占 60。其中:斜拉桥 6 座, 苏通长江大桥 ( 主跨 1088m 钢箱 ) 、香港昂船洲大桥 ( 主跨 1018m 分离钢箱 ) 分别位居第一、 第二;悬索桥 4 座,舟山西堠门大桥 ( 主跨 1650m 分体式钢箱 ; 为

4、世界首座 ) 、润扬长江大 桥( 主跨 1490m 钢箱) 分别位居第二、第四 ;拱桥 8座,重庆朝天门长江 大桥( 主跨 552m 连续钢桁系杆拱 ) 、上海卢浦大桥 ( 主跨 550m 钢箱提篮系杆拱 ) 分别位居第一、第二;梁 桥 6 座,重庆石板坡长江大桥 ( 主跨 330m 钢混凝土混合刚构 连续 ) 位居第一。跨海桥 梁中的宁波杭州湾大 桥总长36 Km,为跨海桥梁世界之最;东海大桥总 长32. 5Km舟山大 陆连岛工程总长 54.68Km;上海长江隧桥工程一一一南隧北桥,隧道长度 8. 9Km桥长10.3Km,为世界迄今为止最大的隧桥结合工程。不管什么形式的桥梁 ,其基本材料大多

5、可归为石材,木材,混 凝土,钢材等类型,而这些材料在耐久性方面均存在不同程度的问题,需要给予特别关注。所以随着我国桥梁建切,加上国际桥梁领域最新。设高潮的来临,对重 要桥梁运营状况进行实时监测显得愈发迫 发展动态的引导,桥 梁健康监测日益成为国内发展的一大热点桥梁健康监测系统发展简介虽然健康监测是最近 一二十年才兴起的一个技术方向,但追寻 历史我们发现结构监测 概 念古已有之:在中 国,古塔上通常安装有各种各样的铃铛, 而这些铃铛就兼具结构强烈 晃动 时提醒游人撤离 的预警功能。另外,中国的监测传感技术 也源远流长:汉代的古籍中 就有大 气温度和风速 风向测量的记载。而 1969年,Lifsh

6、itz 和Rotem所写的论文则被视为阐述现代结构健康 监测理念通过动力响应监测评估结构 健康状态的第一篇论文; 由此,桥 梁健康监测 在世界范围内蓬勃发展起来。在工程领域:1987年,英国在总长522m的三跨连续钢箱梁桥 Foyle桥上布设传感器 监 测大桥运营阶段在 车辆与风载作用下主梁的振动、挠度和应 变等响应,该系统是最早安 装 的较为完整的健康 监测系统之一。挪威的 Skamsundet斜拉桥,丹麦的 Faroe跨海斜拉桥 和 主跨1624m的Great Belt East悬索桥,加拿大的 Con federation 连续刚构桥,日本的 明石海峡大桥等大跨 桥梁上也相继安装了监测系

7、统; 1997年, 香港的青马大桥、汲 水门 大桥和汀九大桥等三 座大桥上安装了风和结构监测系统。随后 ,内地的东海大桥、虎门大 桥、徐浦大桥、江阴 长江大桥等桥梁上也建立了不同规模的结 构监控系统。在学术领域:1988年在日本东京举行的第九届世界地震工程会议(9WCEE上,首次在国际范围内讨论土木 工程主动控制。1994年,国际结构控制学会(IASC)正式成立,同年 召 开第一届国际结构 控制会议( 1st World Conf. on StructuralControl)。为了应对形势 发展的需要,2006年以后,国际结构控制学会(IASC)会议改名为国际结构控制与监测会议( World

8、Conf. on Structural Control and Monitoring )。健康监测主要研究进展综合桥梁健康监测的 发展历史和现状来看,主要有以下技术难 题和研究进展:第一,健康监测系统 总体设计。健康监测系统的总体设计原则 包括以下几项:( 1)根 标准来进行传感器系 统的设计,同时对需要通过健康监测系统 获得哪些能够对结构的状态 评估发挥关键作用的 数据还没有明确的方法。据桥梁结构易损性分析的结果及养护管理的需求进行监测点的布设;( 2)从结构安 全性、耐久性、使用性的需求出发对结构进行监测,采用实时监测和定期监测相结合的方法,力求用最少的传感器和最小的数据量完成工作;3)以

9、结构位移监测为主,以力、应力、模态分析为辅助。监测内容主要是荷载源、系统特性和结构响应。目前对于健康监测系统的第二,传感传输技术 。传统传感测试技术易受干扰、传输导线 过长等缺点已不再满足桥梁健康监测的发展要求,加上现代科技支撑,近年来发展起来了许多新型的传感技术,其中以光纤传感、无线传感、GPS技术和In ternet数据通信技术为主要技术代表。关于传感器优化布置的问题也愈发引起人们的关注,传感器的类型、有着非常大的关系,客观条件中传感器的数量总是有限的,如以发挥其最大的效用是是健康监测的关键技术之一,也是以后数量和布置位置对监测效果何将有限的传感器合理布置 大力发展的方向之一。覆盖能力和对

10、多源不确起来的数统计决策理论、证据理论、简单数据分析阶段,同时桥定性信息的综合处理据融合技术主要有:模糊推理、神经网络梁健康监测系统会产生大量测试数据 , 对这些测试数据与信息进行整合与解释,以及对结构真实状态的进行合理评估仍存在很大困难。第三,数据融合技术 。多传感器数据融合技术以其强大的时空能力, 可以有效地进行结构 系统的监测和诊断。目前已经发展 加权平均、卡尔曼滤波、贝叶斯估估计、 。现有健康监测系统多停留在数据采集和第四,系统与损伤识 别理论研究。目前主要的研究方法有基于 振动的结构损伤识别方 法和模型修正方法。 结构损伤识别作为结构状态评估的重要组 成部分,是近年来健康监测 方 向

11、的研究热点之一 ,出现了如基于结构频率、位移模态、应变模态、曲率模态、应变能、 刚度、柔度、能量法 、频响函数等一系列损伤识别方法。而模型修正方法主要是基于运动方程、测试结果和有 限元模型构造约束优化问题不断修正结构 刚度、质量和阻尼分布,使 其响应尽 可能的接近 实际响应。结构的模型修正能够为健康监 测提供基准模型,同时也为 基于测试结 果的反演 进行结构损伤识别和性能模拟提供了很好 的基础。内部信息对结构的施 模糊理论、神经网络量数据中提取能够反 会涉及到结构数据的可靠度理论、层次分析法、 态评估需要从结构监测的大定期的评估,而这其中必然 但目前这个方面所作的工作第五,结构健康状态 评估。

12、结构状态评估方法主要是运用可能 获得的反映结构性能的工运营等工作状态进行评估,目前主要有以及专家系统等。健康监测系统的结构状 映结构特性的特征,以完成对结构实时和 特征提取、数据融合及性能决策等方面,较少。桥梁健康监测实例- 东海大桥东海大桥工程 2002年 6月 26日正式开工建设,历经 35个月的艰苦施工,于 2005年 5月 25日实现结构贯 通,是我国第一座真正意义上的 跨海大桥。东海大桥起始于上海南汇 区芦潮港,北与沪芦 高速公路相连,南跨杭州湾北部海域,直 达浙江嵊泗县小洋山岛,全 长约 32.5 公里,其中陆上段约 3.7 公里, 芦潮港新大堤至大乌龟岛之间的海上段 约 25.3

13、 公里,大乌龟岛至小 洋山岛之间的港桥连接段约 3.5 公 里。大桥按双向六车 道加紧急停车带的高速公路标准设计,桥宽 31.5 米,设计车速每小时 80 公里,设计荷载按集装 箱重车密排进行校验,可抗际航运中心洋山深水12 级台风、七级烈度地震,设计 基准期为 100年。东海大桥是上海国 港区一期工程的重要配套工程,为洋山深水港区集装箱陆路集疏运和供水、供电、通讯等步发展,加快上海国需求提供服务。东海大桥的建成通车,为际航运中心的建设奠定了坚实的基础。东洋山深水港建成开港和进海大桥当时被上海市政府列健康监测系统的布 设也提上为“一号工程 ”,其重要性不言而喻,在进 行结构建设的同时,了日程。

14、 2006年 10月,东海大桥的监测系 统顺利布置到位,并于 2007 年正式投入使用。东海大桥的监测内容 主要是环境参数,结构静力和动力响应和 结构的耐久性。其中环测内容包括斜拉桥桥塔的变 梁和塔的振动以及斜拉索的 性腐蚀。境参数主要包含风速 ,地震,波浪和冲刷等,结构响应主要监 形,连续梁的挠曲, 阻尼器和伸缩缝的变形,主梁的损伤,主 应力。结构的耐久性 监测包含钢结构的疲劳和混凝土结构的慢东海大桥上使用的基 本监测手段有:用 FBG传感器测量应力和温度;用GPS监测结构 变形;用疲劳传感器 测量桥梁主梁的疲劳。全桥一共使用了 478 个传感器,包括使用在 主 跨上的 169 个。数据评价

15、体系分为联 网评估和脱机评估。联网监测是一种自动 监测系统,这一系统不仅可以判断结构的安全性,还可以进而对采集的数据进行分析。自动监测系统还可以自动决定是否需要向管理者预警并立即开始脱机评估。脱机评估系统可以进行一些更加高级的分析,比如结构静力分析,模态分析,桥梁力学行为和环境因素的校正分析等等。这一系统需要大量的结构分析并由专家进行判断进而对桥梁的状态给出一个全面的评估。桥梁结构的监测数据 不仅包含正常运营状态,还包括在极端荷 载(比如台风,地震, 爆 炸,船撞等)下的 桥梁结构响应。得到大量的监测数据以后 ,需要对其进行更多的深入 分析 和整理,首先区 分出数据中的哪些部分是由于环境改变引

16、 起的结构响应,哪些又是由 于结构 破坏产生的等 ,然后通过图表等形式把数据中蕴含的内 在规律及变化情况表现出来, 再对结 构的整体状况 进行评估。引言预应力混凝土桥梁自 出现以来的每次重大技术发展,都和材料、结构体系和施工工艺等创新密切联系在一起,它们相互促进不断发展:1.预应力材料高强、高性能及轻质 混凝土技术发展,使混凝土受力性能改善、耐久性提高、浇筑更凝土桥梁结构自重荷载下降。高强、低松弛预应力钢材发展,使预应力混凝土的效率大大术发展,使预应力筋纤维增强聚合物预应力筋技等优点于一体,一些钢材难以克服的弱点得到消除,将预应力混凝土桥梁带入了一个崭新利用现代传感和通讯等技术的智能化预应力混

17、凝土材料,不间的发展领域。预应力材料断监视结构的工作状态、生命轨迹,将对预应力混凝土桥梁健康、安全运行提供有利保障2.预应力桥梁结构体系部分预应力混凝土结 构,兼有预应力和钢筋混凝土结构的优点,克服了全预应力混凝土结构的缺点 无粘结体内预应力混 凝土结构,消除了后张预应力筋管道的压 浆,降低了预应力摩阻损失。预 应力桥梁结构体系双向预应力、预弯预 应力体系是预应力概念的新发展,它们使结构的 高跨比显著减小,满足了一些特殊的使用要求体外预应力混凝土结构,构造简化、补索 方便、施工简单,维护方便、总体经济性 工质量和安全性方面最有竞争力的方案。预应力桥梁结构体系 桥梁,利用钢腹、预 应力混凝土顶板

18、与底板在受力、构造及施优越,逐步成为在经济、施 钢一混凝土组合式预应力 工等方面的优点,成为预应力桥梁一种新的发展 方向。3.预应力桥梁施工技术节段施工法使大跨径 桥梁轻松跨越深险的江海和山谷,通过分段施工、预应力逐段连续,最终形成结构整 体 利用现代化设备,桥 梁采用标准化分段、系列化预制方法,使其适合不同跨径组合的 要求,大大提高了施工速度,并对环境的不利影响降低到最小程度。预应力桥梁施工技术通过预应力技术发展起来顶推施工法、转体施工法分别适用于不同的桥型结构。、预应力混凝土材料(一)混凝土材料方便,也使预应力混 提高,也促进了预应力器具和设备发展 兼轻质、高强、耐腐蚀、耐疲劳、非磁性1.

19、 高性能混凝土 HPC( High Performance Concrete )高性能混凝土含有三 种关键掺料:极细颗粒的硅灰、飞灰、粒 状高炉碱矿渣,以此达 到填充、润滑及增强 的作用。高性能混凝土具有很 多优良的特点:易浇筑、易密实、不离析 ;高早强、韧性好、低 徐变、耐疲劳;高密 水、耐磨损、抗化蚀;实用强度可达100MPa。 其中高强并不是混凝土的唯一指标,另外有 一系列的质量要求,比如:自密实,水灰 比小于 0.4 , 28 天收缩小于 2X 10-4和56天设计 强度达到60100MPa等。高性能混凝土应用研究课题主要在于混凝土材料力学性能,设 计有效应变和徐变、收缩等。2. 活性

20、粉混凝土 RPC( Reactive Powder Concrete )活性粉混凝土现在还 处于研究阶段,主要成分包含:水泥,硅 灰,石英粉,硅砂,细 钢纤维等。同时具有 以下优良特性:强度 200800MPa实用150MPa以上,优良的韧性、 抗疲劳性,较高的弯 拉强度,抗循环冻融、盐、碳酸化作用性 和长寿命、低维护费等。3. 轻质混凝土 LWC( Lightweight Concrete )限制混凝土桥梁跨径 增大的一个关键因素就是自重过大。为此 ,轻质混凝土应运而生, 它的骨料容重为 1419kN/m3, 同时强度与一般混凝土相 当,可大大提高混凝土桥梁的极限 跨 径,国内已有这一 类型

21、的实验桥诞生。4. 绿色环保混凝土尽可能少地采用水泥 熟料,更多地采用工业废渣,大大减少二 氧化碳的排放量绿色环 保混凝土是混凝土发 展方向。5. 混凝土材料发展预测 (2050年左 右将出现替代混 凝土的新材料)结合当今科技和工程 实践的发展来看: 5年后人类将开发出能适合高寒和高热地区施 工的混凝土,商品混 凝土将分为高、中、低流动性三类; 10年后可以向混凝土中加入或 表 面粘贴特殊材料,使 其随时显示应力状态的变化彩图,开发彩 色高强混凝土,并实现化学 预应力的实用化; 25年后开发半透明混凝土,以方便施工与管理,普遍采用彩色高强混凝土; 50 年后开发出适 应地球温暖化的热电转化混凝

22、土,并开发出在地震中能大变形,但震后能恢复原状的形状 记忆混凝土,无徐变、收缩的混凝土得到实际应用,同时出现水泥混凝土的替代材料; 100 年后开发出能使新浇混凝土保持良好和易性的时 间设定装置或材料; 开发出能与盐份反应 后形成保护膜从而提高耐久性的材料;开发通过分子间张拉技术在水泥分子之间施加预应 力的超高抗拉混凝土。(二) 预应力材料1. 预应力钢筋正在研发的预应力钢 筋各项性能均有不同程度的提高,比如: 热镀锌钢丝强度达2000MPa级,钢绞线强度达 2300MPS级,且其它性能指标不低于现有材料 ,与之配套的锚 固体系也在加紧研制 之中。另外还有高抗腐蚀高强钢绞线,主 要用于斜拉索;

23、将钢绞线镀 锌铝( 5 ),抗腐、锚固性能将明显好于镀锌钢绞线;采用不 锈钢绞线,也能达到良好 的抗腐效果。对钢绞线进行环氧涂 覆也能达到很好的技术效果,根据涂覆方 式的不同可分为单丝涂覆式和整体涂覆式两种。其中,单丝涂覆的工艺主要是:除锈 单丝涂覆 重新绞合;整体涂覆式的工艺主要为:除锈 整体涂覆 (涂砂 )。经过环氧涂覆,可以大大提高钢绞线的耐久性能,但也存在一定的技术缺陷,比如:锚具锚固回缩量大,预应力松弛大,粘结锚固与传递长度 大等。缓粘结预应力筋的开 发将大大方便预应力构件的施工。运用这 一技术,预应力张拉后 在常温下经过特定时 间,树脂能自动硬化,并达到设计强度, 具有防腐性好、免

24、压浆、施 工方便等技术优势。2.纤维增强聚合物 FRP 筋(FibreRe in forcedPloymerTe ndon )常用的FRP材料包含:碳纤维 CFRP( Carbon FibreReinforcedPloymer),芳纶纤维AFRP( AramidFibreReinforcedPloymer )和玻璃纤维 GFRP( Glass FibreReinforcedPloymer )FRP筋具有优良的力学性能,将FRP预应力筋和预应力钢 筋对比可以发现:FRP筋强度一质量比为钢材的5倍,疲劳应力幅为钢 材的3倍(GFRP外),抗腐性能好、非磁性、非导电、热膨胀系数 小。同时也存在一定的

25、局限性:极限延伸 率低,破坏呈脆性;抗剪强 度为钢材的 1/51/4 ;静载长期与短期强度 的比值低; FRP 预应力筋锚具也更为 复杂,需 专门设计。FRP 预应力体系的研 究课题主要分为以下几个方面:材料短期 和长期性能;粘结性能、 物理性能;疲劳性能、耐久性等;FRP预应力混凝土结构性能和锚具及体外FRP索的应用 技术。3. 预加应力材料发展预测( 2025 年前高强 、高耐久钢材将有新发展)5 年后,六角形套管和六角形预应力钢绞线 组合,提高管道空隙,改善灌 浆充实度;10年后,将开发出替 代钢板的纤维增强塑料板,出现 腹板为FRP的预应力桥梁;25年后, 开发出超高强极细的 预加应力

26、材料,开发出能在混凝土浇筑后 自应力的张拉材料,无需施 加预应力; 50 年后, 开发极薄自应力张拉材料,能方 便地粘贴在结构表面进行修补,开发出网格状的张拉材料 ,从而可以方便地施加空间预应力,把形 状记忆合金作为施加预应力 的材料。(三)预应力筋管道1. 塑料波纹管塑料波纹管主要由高密度聚乙烯或聚丙烯制成,具有摩擦系数 低(钢绞线卩=0.100.14,钢丝 卩=0.080.12 );耐腐性好(防水、耐候、抗氧化及化蚀);强度高、 刚度大、成孔质量好可弯性好(1.8m半径);重量轻,方便运输和安装;与混凝土粘结好;配套部件齐全等 优势。2. 体外索透明套管85%( PVC为78%),可以目透

27、明套管主要由离子 键树脂“ HIMILAN”制成,透明度达测检查灌浆质量,发现问题可以钻孔补浆。将其用于箱梁内,可以免受紫外线辐射影响;同时具有高抗碱、油污的性能;预应力钢绞线摩擦损失也小于普通(pvc套管;另 外还不含氯离子和塑化剂,为环保材料。3. 管道灌浆材料发展预测5年后将开发出大张拉力、预灌浆、后粘结的预应力筋;开发出不取决于 温度的预灌浆后粘结预应力筋;开发预涂在管道内壁的呈粉末、固体、凝胶状的灌浆基体材料,预应力筋张拉后灌水即成完全填充的灌浆物、预应力桥梁体系(一)体外预应力混凝 土桥梁1. 标准化、系列化体外预应力混凝土桥 梁发展的一个显著特点就是标准化,系列化。主要表现在:标

28、准化梁高、分段、系列 跨径;标准化预应力索构造;工厂系列化 生产;标准化装配施工2. 轻巧化表现有:构造优化,受轻巧化也是现代体外预应力混凝土桥梁发展的一大特色,具体 力明确,高强薄壁和 结构轻巧等。3.新型化即出现了一种特殊的 体外预应力梁桥现实:部分斜拉桥,又称矮塔斜拉桥。(二)钢腹混凝土组合梁桥1.为解决混凝土腹板开 裂的问题,提出了用钢板来替换混凝土腹 板方案。这一方案具有 如 下特点:结构重量 比PC桥梁减轻约30%采用体外预应力体系;钢腹板受力优于混凝土;收缩、徐变影响较大;钢板受压、加劲板较多2.波纹钢腹板混凝土组合箱梁桥在钢腹板混凝土组合 箱梁桥的基础上,为了减少腹板加劲,增强

29、腹板稳定性,方便顶底板预应力的施加,又发展出波纹钢腹板的方案,这一方案具有如下特点:结构重量比PC桥梁减轻约30%体外预应力体系;波纹腹板轴向刚度小、主要抗剪;收缩、徐变影响大大减小;钢腹板不设 稳定加劲板;联结处构造应予重视。2.钢桁腹混凝土组合箱梁桥结构重量比PC桥梁减轻约3040%体外预应力体系桁腹轴向刚度可忽略、主要抗剪免除收缩、徐变带来的危险裂缝加拿大魁北克Sherbrooke人行桥(L=60m)活性粉混凝土钢桁腹组合结构体外预应力、无非预应力筋结构重量只有PC的1/21/3,与钢结构相差无几在蒸汽养护条件下,活性粉混凝土强度达到 200 MPa钢管内约束混凝土强度350MPa材料抗

30、压等性能直逼钢材。活性粉混凝土配合比配料的成份 数量(1/m3)波特兰水泥705kg硅粉230kg石英 粉210kg 硅 砂1010kg钢纤维190kg超塑剂37.5 kg 水200lit 水泥用量高 水灰比低 (0.21)钢纤维骨料瑞士近Baden的Baregg公路桥(25.62+4 X 38.43+25.62(m)钢管桁梁、混凝土桥面板组合结构桥面板体内双向预应 力体系结构重量约PC的1/2钢管桁梁分段预制、吊装连接桥面板纵向2.135m 一段(35t)预制、吊装连接横向每隔60cm设一根4 j15.24mm预应力钢绞线,吊装时张拉 50%预应力纵向预埋22根HDPEf,设22束7 j15

31、.24mm预应力钢绞线桥面板与桁梁联成整体前先施加纵向预应力结合缝隙内压浆防腐(三) 钢混凝土填充组合桥梁1.钢管混凝土连续梁桥在中支点处钢管填充混凝土 在跨中段钢管填充加气混凝土 钢管强度充分发挥、延性好无加劲构造,焊接量大减2部分预应力U形钢混凝土连续梁桥钢板冷加工弯折成U形少量加劲板,焊接量、成本大减中支点段填充混凝土中支点段桥面板内设预应力筋跨中段不填充混凝土3. 钢管混凝土斜拉桥分段填充一般、轻质 混凝土或不填混凝土静力、动力性能良好 用钢量低于钢箱梁,构造简单 经济性优于大跨钢箱 梁斜拉桥(四)预弯预应力梁桥(四)预弯预应力梁桥采用钢梁预弯反弹作用施加预应力建筑高度低(约为 L/3

32、5 )、冈度大无支架施工、吊装重 量小适合于低建筑高度的 跨线、跨河桥、多层立交桥,以及轨道交通站台桥梁等结构日本建造的预弯预应 力桥已达几百座,我国也在立交桥结构中采用用于跨线公路桥用于跨线铁路桥用于高架桥 用于跨河桥用于轨道交通站台桥梁等结构(五) 双预应力桥梁在混凝土的拉、压区 同时配置预拉和预压预应力筋、形成拉、压双向作用预应力体系的结构突破了单一在混凝土受拉区配置预拉预应力筋的设计概念,使混凝土结构预加应力的效率大为提高,也使预应力 技术获得更大的发展空间(五)双预应力桥梁后压预应力工艺为了充分发挥钢筋的 强度,避免其在千斤顶的顶压下发生失稳,同时保证钢筋与混凝土的粘结力与孔道压浆便

33、 禾预埋管道制作成沿纵向逐段正交变化的椭圆形截面(五)双预应力桥梁 后压预应力工艺顶压预应力筋的锚固 可采用两种方式(五)双预应力桥梁 先压预应力工艺采用先压法的预压应力管为高强度合金无缝钢管。因不可避免的偏心作用,钢管预压时将发生弯曲 变形,依其长短不同而表现为刚性或柔性特点(五)双预应力桥梁先压预应力工艺预压应力管通过与混 凝土之间的粘结作用实现锚固(六)纤维增强预应力混凝土桥梁 20世纪80年代起,国际工程界 开始将FRP材料用于预应力混凝土 桥梁1980 年第一座采用GFRP绞线的后张预应力混凝 土人行桥在德国建成1986年,第一座采用GFRP粗筋的后张预应 力混凝土公路桥也在德国建成

34、1991年第一座采用 GFRP绞线的后张预应力混凝土公路桥 也在德国建成(六)纤维增强预应力混 凝土桥梁1988年第一座采用CFRP绞线的先张预应 力混凝土公路桥在日本建成1989年第一座采用 CFRP粗筋的后张预应力混凝土桥梁也在 日本建成 1991年第一座采用 CFRP绞线的后张预应力混凝土桥梁在 德国建成。(六)纤维增强预应力混凝土桥梁1990年第一座采用 AFRP编织筋的先张预应力混凝土公路桥、采 用AFRP带筋的后张预应力混凝土人行桥均 在日本建成 同年及次年, 采用AFRP粗筋的先张及后张预应力混凝土桥梁也在日本建成(六)纤维增强预应力混凝土桥梁作为预应力混凝土桥梁的预加应力材料,

35、CFRP材料具有更多的优点美国第一座CFRP桥梁一密歇根州南菲 尔德市(Southfield )布里奇街(Bridge Street )桥,在2002年 PCI设计奖的评选中 赢得哈利.爱德华兹工业进步奖。(六)纤维增强预应 力混凝土桥梁该桥由两座平行的、跨越鲁杰(Rouge)河的结构(结构 A和结构B)所组成。桥梁采用 三跨斜交15构造,跨 径布置为21.314m + 20.349m + 21.429m,全长为62m 桥梁结构A上 部结构由5根等距布 置的常规AASHTO川型混凝土工字梁、现浇连续混凝土桥面板组成;结构B由4个特别预制的预应力混凝土 双T形简支梁组成。(六)纤维增强预应力混凝

36、土桥梁(六)纤维增 强预应力混凝土桥梁(六)纤维增强预应力混凝土桥梁(六)纤维增强预应力混凝土桥梁每根双T形梁的纵向与 横向,均采用先张 CFRP筋和后张CFRP绞线 在桥面和梁肋内的非 预 应力筋由CFRP弯曲形绞线、直线筋、网格筋及不锈钢箍筋构成优化桥梁的耐久性,实施对材料质量进行复检,取用高质量混凝土和采用的金属筋仅为不锈钢材料(六)纤维增强预应力混凝土桥梁(六)纤维增强预应力混凝土桥梁(六)纤维增强预应力混凝土桥梁 (六)纤维 增强预应力混凝土桥梁加拿大HI ( Hollowcorelncorporated )公司为这座桥梁提供了所 有预制梁,施工期间美国伊利诺州斯科基施工技术实验室对

37、该桥安装了长期监测仪器南菲尔德市劳伦斯技术 大学结构试验中心、加拿大温泽大学对该桥进行了多方面的研究,从1/3缩尺的多组正交和斜交桥模型试验中获得大量数据(六)纤维增强预应力混凝土桥梁由于这种类型桥梁以前尚未建造过,早期通过测试系统与遥测方法对其各种关键参数进行识别是需要的梁的监测是从其制造开始的,经历架设施工连续至以后5年。在这个过程的最后,将对采用 CFRP材料桥梁的使用性能做出相应结论(六)纤维增强预应力混凝 土桥梁 在制造阶段的预加应 力施工中,12根双T形梁均被测试与监测内 力与应力。同时,在 6 根梁的内部与外部设置了长期监测传感器大多数测试仪器在梁制造期混凝土浇筑前已安装(六)纤维增强预应 力混凝土桥梁先张 CFRP应力筋非张拉端测力传 感器(六)纤维增强预 应力混凝土桥梁先张CFRP应力筋埋入式钢弦测力传感器(六)纤维增强预应力混凝 土桥梁后张体外CFRP应力绞线及锚固端传感器

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论