公兴车站站场接触网设计毕业论文_第1页
公兴车站站场接触网设计毕业论文_第2页
公兴车站站场接触网设计毕业论文_第3页
公兴车站站场接触网设计毕业论文_第4页
公兴车站站场接触网设计毕业论文_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 公兴车站站场接触网设计 年 级:2010 学 号: 姓 名: 专 业:电气化铁道技术 指导老师: 2012 年 07 月 毕业设计任务书 发题日期: 2012 年 4 月 20 日 完成日期: 2012 年 6 月 30 日 题 目 公兴车站站场接触网设计 1 1、本论文的目的、意义、本论文的目的、意义:在我国铁路跨越式发展的时期,本设计虽然只是一个站场 的接触网毕业设计,显然是微不足道的,但正是无数个这样的设计,使我们这些电 气化铁道行列中的技术工作者得到了不断的学习和锻炼,因此本设计对于电气化铁 道知识的学习者来说具有深远的现实意义。对施工单位、运营单位及初学者有一定 的借鉴作用。 学生

2、应完成的任务:学生应完成的任务: 调研高速电气化铁路发展概况、趋势及课题研究背景,明确毕业 设计的任务与完成的工作;通过当地气象条件,对接触网受力进行分析,最后确定支柱位置及 类型、锚段划分、拉出值大小及方向、支柱侧面限界、支持装置结构及形式、基础及横卧板类 型、主要设备的安装结构及位置、接触线高度、悬挂类型、接地方式、防护要求、附加导线架 设,特殊设计及工程数量统计等。 2、论文各部分内容及时间分配:(共 8 周) 第一部分 1 (周) 第二部分 1 (周) 第三部分 2 (周) 第四部分 2 (周) 第五部分 1 (周) 评阅及答辩 1 (周) 备 注 目 录 摘 要.1 第 1 章 绪

3、论.2 第 2 章 机械计算.3 2.1 负载计算 .3 2.1.1 自重负载.3 2.1.2 冰负载.3 2.1.3 风负载.3 2.1.4 合成负载.4 2.2 最大跨距计算 .4 2.2.1 直线区段.5 2.2.2 曲线区段.5 2.3 半补偿链形悬挂安装曲线计算 .6 2.3.1 当量跨距计算.7 2.3.2 值计算.7 2.3.3 tco 值的计算三次方程.8 2.3.4 临界负载 qlj 的计算 .8 2.3.5 计算并绘制有载承力索安装曲线 .9 2.3.4 计算并绘制接触线的弛度曲线及悬挂点处高度变化曲线.9 2.3.5 计算并绘制无载承力索安装曲线.11 2.3.6 计算最

4、大附加负载下承力索的张力.13 2.4 关于张力差 tj=f(l).15 2.4.1 直线区段.15 2.4.2 曲线区段.16 2.5 绘制 tje、tjde随 lx而变化的曲线 .17 第 3 章 接触线的受风偏移较核.19 第 4 章 支柱 腕臂 基础校核.20 4.1 支柱容量校核 .20 4.1.1 支柱及其腕臂的水平和垂直负载.21 4.1.2 支柱容量校验.21 4.2 腕臂强度校核 .22 4.2.1 确定着力点.22 4.2.2 对各力进行分解.23 4.2.3 求最大弯矩及最大轴力.25 4.2.4 强度校核.26 4.3 基础稳定性校核 .26 4.3.1 计算换算水平力

5、和换算水平高度.26 4.3.2 求极限载荷.26 4.3.3 基础计算.26 第 5 章 接触网平面设计原则.28 5.1 站场接触网平面设计 .28 5.1.1 站场平面设计的内容和次序.28 5.1.2 站场平面设计的原则及注意事项.28 5.2 区间接触网平面设计 .30 5.3 本设计主要技术原则 .31 结 论.33 致 谢.34 参 考 文 献.35 附录一.36 附录二.37 附录三.38 附录四.39 摘 要 接触网是电气化铁道中主要供电装置之一,本文在气象条件、地质条件的基础 上对接触网进行了分析,对典型站场进行了设计。第一章主要介绍电气化铁路的发 展及趋势;第二章就气象和

6、地质条件结接触网进行了机械计算;第三章对接触线的 受风偏移进行了校核;第四章对支柱、腕臂、基础进行了校核;第五章对接触网设 计原则进行了论述并设计出公兴站站场的接触网平面图。 关键词:关键词:公兴接触网;气象;地质; 第 1 章 绪 论 经过不断地技术改进,实践证明,无论在运输能力、运输效率、机车的使用、 检修、燃料的消耗以及劳动条件的改善等方面,蒸汽机车和内燃机车牵引都是比不 上的。电力牵引是一种比较理想的牵引动力。 我国电气化铁道发展较晚,但一开始就采用了较先进的工频单相交流制供电方 式,使用了我国自制的干线大功率韶山型电力机车。我国自己设计修建的第一条电 气化铁道干线宝鸡成都于 1976

7、 年 7 月 1 日全线通车,第二条电气化铁道于 1977 年正式通车,第三条、第四条电气化铁道也于 1980 年通车,截止 2006 年底全国电 气化铁路营业里程达到了 24000 公里,占全国营业里程比重的 45.6%。由于铁路建 设严重滞后,长期超负荷运输,运输能力一直比较紧张。贯彻改革开放方针以来, 国民经济高速度发展,铁路客货运量猛增,铁路运输能力不足的矛盾更加尖锐,主 要干线、枢纽能力饱和,卡脖子的“限制口”不断增加,已不能适应国民经济持续、 快速发展的需要,铁路运输还是国民经济中的突出薄弱环节,制约着国民经济的发 展。 为此,党中央、国务院高度重视铁路的发展,党的十七次代表大会已

8、把铁路建 设作为重点,并对铁路实行倾斜政策,相继出台了一系列政策措施。铁道部党组坚 决贯彻执行国务院领导关于加快铁路建设的指示,抓住机遇,迅速调整了“十一五” 铁路建设计划,作出了“十一五”期间铁路建设规模为:建设新线 19800 公里。 “十 一五”2020 年电气化铁覆盖 50%以上。一场铁路建设的大会战已在辽阔的国土上全 面展开。 可以预见,随着国民经济的持续发展,以及作为电气化铁道发展基础的电力工 业和机械工业的不断发展,电力牵引作为铁路运输的最佳牵引方式,将会得到突飞 猛进的发展。 在我国铁路建设已进入加快发展的新时期下,本设计虽然只是一个站场的接触 网毕业设计,显然是微不足道的,但

9、正是无数个这样的设计,使我们这些电气化铁 道行列中的技术工作者得到了不断的学习和锻炼,因此本设计对于电气化铁道知识 的学习来说具有深远的现实意义。 第 2 章 机械计算 2.1负载计算 在负载决定中,不论是垂直负载还是水平负载,均认为是沿跨距均匀分布的, 其计算方法如下: 2.1.1 自重负载 gj=8.910-3 kn /m, gc=6.0310-3 kn /m, gd=0.510-3 kn /m, 2.1.2 冰负载 承力索的纯冰负载 (2-1) 9229 10)()2(1025 . 0 ghdbdbdgh bbcbo g =3.149005(5+11)9.8110-9 =2.2210-3

10、(kn /m) 对于接触线的纯冰负载,其接触线直径可取为 2/ )(bad =(11.8+12.8)/2=12.3(mm) (2-2) 则(b 取原始资料值的一半,即 b=2.5mm) 9 10)( ghdb bjbo g =3.149002.5(2.5+12.3)9.1810-9 =1.0310-3(kn /m) 2.1.3 风负载 在计算链形悬挂的合成负载时,是对承力索而言,其接触线上所承受的水平风 负载,被认为是传给了定位器而予以忽略不计,故只计算承力索的风负载。 第一种情况为最大风速 vmax时的风负载 6 max 2 10615 . 0 dkv pcv =0.6150.851.252

11、521110-6 (2-3) =4.49210-3(kn /m) 第二种情况为覆冰时的风负载 d=d+2b (含冰壳厚度) pcb=0.615 (2-4) 626 max 2 10)5211(1025 . 1 1615 . 0 10 kv =1.61410-3(kn /m) 2.1.4 合成负载 无冰、无风时的合成负载 333 0 105 . 01003 . 6 109 . 8 dcj ggggq =15.4310-3(kn /m) 最大风速时的合成负载 (2-5) 2 2 cvdcjv pgggq 22 cvo pg 2 3 2 3 10492 . 4 1043.15 =16.0710-3

12、(kn /m) 覆冰时的合成负载 (2-6) 2 2 cvbvob pgqq 2 2 cbcbvjbvo pggq 2 3 2 333 10614 . 1 1022 . 1 1003 . 1 1043.15 =18.7510-3 (kn/m) 2.2最大跨距计算 因采用铜接触线,故当量系数 m 取 0.90 2.2.1 直线区段 接触线的许可偏移值接触线的许可偏移值 bjx取取 0.5m pj=0.615kdv2maxd10-6 (2- 7) =0.6150.851.2512.325210-6 =5.02310-3(kn /m) 对于钢支柱,vj=0.03m 则 (2-8) 2 2 max 2

13、 jjxjjx j j bb mp t l 2 2 3 03 . 0 03 . 0 5 . 003 . 0 5 . 0 10023 . 5 9 . 0 10 2 =85.8(m) 对于钢筋混凝土支柱,vj=0.02m 则 (2-9) 2 2 max 2 jjxjjx j j bb mp t l 2 2 3 02 . 0 02 . 0 5 . 002 . 0 5 . 0 10023 . 5 9 . 0 10 2 =87(m) 2.2.2 曲线区段 均采用钢筋混凝土支柱,均采用钢筋混凝土支柱,bjx=0.45m (2-10) jjx j j j b r t mp t l 2 2 max 当 r=3

14、001200m 时, 4 . 002 . 0 45 . 0 750 10 10023 . 5 9 . 0 102 2 3 max l = 61(m) 当 r=12001800m 时 25 . 0 02 . 0 45 . 0 1500 10 10023 . 5 9 . 0 102 2 3 max l =69.7(m) 当 r1800 时 15 . 0 02 . 0 45 . 0 1800 10 10023 . 5 9 . 0 102 2 3 max l = 67.8(m) 此处考虑最大跨距取 5 的整数倍,并考虑+1、2 原则,可确定:直线区段的 最大跨距 lmax=80m, 曲线区段的最大跨距

15、 lmax=60m 但当跨距值过大时,实践证明,沿跨距内的弹性产生较大的差异,故造成跨距 中的磨耗加剧,使之维修工作量增加及缩短了接触线的使用寿命,故是不行的,因 而目前我国最大跨距采用 60m。 2.3半补偿链形悬挂安装曲线计算 2.3.1 当量跨距计算 (2-11) i i d l l l 3 665860255850545 665860255850545 33333 =56.7(m) 取整数得 ld=55(m) 2.3.2 值计算 取 l=ld=55m,e=8.5m 则 (2-12) ox ff f 48 . 0 55 5 . 8255)2( 2 2 2 2 l el 2.3.3 tco

16、值的计算 起始情况:t1=tmin=10, w1=wtmin= q0q0tj/tco z1=tcmax+tj 待求情况 tx =t0=( tmax tmin)/25=(4010)/25=10 wx=w1=q0q0tj/tco zx= tcotj 将上述式子代入半补偿链形悬挂状态方程,即 1 1 2 1 22 1 2 22 2424 tt es zz z lw z lw x x x x 经过变换和整理,可以变成 tco的三次方程,即 tco3a tco2b tcoc=0 式中 max 2 max 22 1 24 2 c jc o t tt eslq ttesa (2-13) 15 1048 .

17、0 1524 2 . 72 2 . 1961043.15 1010 2 . 72 2 . 1961012 2 2 3 6 5 . 10 (2-14) 2 max 2 10 12 jc j tt esltqq b 2 2 2 3 1048 . 0 1512 2 . 72 2 . 196551048 . 0 10 3 . 15 = 10.4 (2-15) 1 24 2 max 22 22 0 jc j tt t eslq c 1 1048 . 0 115 1048 . 0 24 2 . 72 2 . 196551043.15 2 222 2 3 400 三次方程为 tco310.5tco210.4

18、tco400=0 利用试凑法,可确定 tco值为:tco=12.3 kn 2.3.4 临界负载qlj的计算 zmax=tcmax+tj=15+0.4810=19.8 (kn) (2- 16) =15.4310-3(1+0.4810/12.3)=21.4510-3 (kn /m) (2- 0 00min c j t t t qqw 17) 将已知数据代入 (2-18) 2 min 2 min 2 max 0 24 t b co j lj wl ttz t t qq 2 32 26 3 1045.2155 105 8 . 19101224 3 . 12 1048 . 0 1043.15 =19.4

19、110-3 kn /m gb=18.7510-3(kn /m) gljgb 故应以最低温度作为计算的起始条件。 即 t1=tmin=10 2.3.5 计算并绘制有载承力索安装曲线 2.3.5.1 有载承力索张力曲线计算 起始条件:t1=tmin=10 (2-)/(1045.211 3 0min1 mkn t t qww co j t 19) z1=tcmaxtj=150.4810=19.8 (kn) 待求条件:tx=? wx=w1=21.4510-3(kn /m) zx=tcxtj= tcx0.4810=4.8tcx (kn) 故安装曲线方程为: (2-20) es t z lw es t z

20、 lw tt cx x xc x 2 22 1 2 1 22 1 1 2424 cx cx cx cx cx t t t t t 88 . 5 8 . 4 67.4832 91.65 2 . 72 2 . 19610128 . 4101224 551045.21 2 . 72 2 . 1961012 15 8 . 4101224 551045.21 10 2 62 6 2 2 3 62 6 2 2 3 将不同 tcx值代入上式得到各个 tcx值对应的温度 tx 值,然后用插入法确定从最 低温度 tmin到最高温度 tmax对应的 tcx值(温度区间间隔为 5) ,其安装表列于表 11 2.3.

21、5.2 有载承力索弛度曲线计算有载承力索弛度曲线计算 利用公式(mm) (2-21) 8 . 48 45.21 8 1 8 2 2 0 2 cx i jcx i co j x ix x t l tt l t t q z lw f (不考虑冰、风影响)对于某一个实际跨距,将不同温度下的值代入上式得不 同所对应的的值,从而得到曲线,不同的对应不同的弛度曲线。其安装表列于表 11。 表 11 有载承力索张力和弛度曲线安装表 绘制有载承力索的张力曲线 zx=f(tx)(tcx= f(tx)及弛度曲线 fx=f(tx)(附录一:图 1) 2.3.4 计算并绘制接触线的弛度曲线 fjx=f(tx)及悬挂点

22、处高度变化曲线 hx=f(tx) 2.3.4.1 根据公式 fjx=(fx-f0) hx=(1-)(fx-f0) (2- 22) 对于某一跨距下的弛度,可由安装表 11 查得,则对于任一温度下的接触线弛 度及悬挂点处高度变化也可由安装表 11 计算得出,其结果列于表 12 中。 tx() -10-50510152025303540 tcx(kn)1514.3113.6312.9612.3211.6911.0710.499.919.378.84 zx(kn)19.819.1118.4317.7617.1216.4915.8715.2914.7114.1713.6 4 li=4 5m 274284

23、295306317330342355369383398 li=5 0m 339351364377392406422438456473491 li=5 5m 410424440457474492511530551572595 li=6 0m 488505524543564585608631631681708 fx () li=6 5m 572593615638662687714741741799831 表 2-2 接触线弛度曲线及悬挂点处高度变化曲线表 2.3.4.2 绘制接触线 fjx=f(tx)及悬挂点处高度变化曲线hx=f(tx)(附录二:图 2) 2.3.5 计算并绘制无载承力索安装曲线

24、 取取 l=ld=55m 2.3.5.1 求 tcwo 起始情况:t1=t0,w1=q0,z1=tco 待求情况:tx=t0,wx=gc,zx=tcwo 将上述已知条件代入链形悬挂状态方程 (2-23) 1 1 2 1 22 1 2 22 2424 tt es zz z lw z lw x x x x tx() -10-50510152025303540 fjx() -21-16-11-6061218253239li=45m hx() -22-17-11-6071320273442 fjx() -25-20-13-7071422313948li=50m hx() -28-21-15-80716

25、24334251 fjx() -31-24-16-8091827374758li=55m hx() -33-26-18-9091929405163 fjx() -36-28-19-100102132445669li=60m hx() -40-31-21-110112335486175 fjx() -43-33-23-120122538526681li=65m hx() -47-36-24-120132741567188 即 es tt t lg t lg cocwo co c cwo c 2 22 2 22 2424 2 22 2 22 2424 co c co cwo c cwo t esl

26、g t t eslg t 2 2 2 3 2 2 2 3 3 . 1224 2 . 72 2 . 196551043.15 3 . 12 24 2 . 72 2 . 196551003 . 6 cwo cwo t t 49 . 9 92.64 2 cwo cwo t t 得 tcwo的三次方程 t2cwo9.49 t2cwo64.92=0 (2-24) 用试凑法解上述三次方程,得 tcwo=10.12 (kn) 2.3.5.2 无载承力索张力曲线 tcw0=f(tx)计算 起始条件:t1=t0,q1=qc,t1=tcwo 待求条件:t1=?,qx=qc,tx=tcwx 将上述已知条件代入简单悬

27、挂状态方程,即 (2-25) 1 1 2 1 22 2 22 2 2424 tt es tt t lg t lg x xx x x 得 es t t lg es t t lgt t x x xx x 224224 2 22 1 2 1 22 1 cwx cwx cwo cwx t t t t 88 . 5 92.381 8 . 65 2 . 72 2 . 1961012101224 551003 . 6 2 . 72 2 . 1961012 12.10 12.10101224 551003 . 6 10 2 626 2 2 3 626 2 2 3 同上述计算有载承力索安装曲线的方法得无载承力索

28、的张力安装表。其安装列 于表 13。 2.3.5.3 无载承力索弛度曲线 fcwx=f(tx)计算。 由公式,得某一实际跨距 li下的弛度,其安装表列于表 1 cwx i cwo ic cwx t l t lg f 8 03 . 6 8 222 3。 表 2-3 无载承力索张力和弛度曲线安装表 2.3.5.4 绘制无载承力索张力曲线 tcwx=f(tx)和弛度曲线 fcwx=f(tx)(附录 三:图 3) 2.3.6 计算最大附加负载下承力索的张力 2.3.6.1 承力索在最大风负载下的张力 起始条件: t1=tmin=-10,w1=g0(1+tj/tc0)=21.4510-3 (kn/m)

29、z1=tcmax+ tj=19.8 (kn) 待求条件:tx=tv=-5, (2-26) co jo vx t tg gw )/(1009.22 3 . 12 1848 . 0 1043.15 1007.16 3 3 3 mkn zx=tcv+tj= tcv +4.8 (kn) 将上述数据代入链形悬挂状态方程,得 (2-27) es t z lw es t z lwt t cx x c x 2 22 11 2 1 22 11 2424 tx() -10-50510152025303540 tcwx(kn)13.2612.4611.8910.8910.139.388.667.9 6 7.326.

30、76.13 li=45m115122131140151163176192209228249 li=50m141151161173186201218237257281307 li=55m172183195209225243263286311340372 li=60m205218233249268289313341371405443 fcwx () li=65m240256273292314340368400435475520 cv cv cv cv t t t t 88 . 5 8 . 4 26.5125 91.65 2 . 72 2 . 19610128 . 4101224 551009.22

31、 2 . 72 2 . 1961012 15 8 . 19101224 551045.2110 2 62 6 2 2 3 626 2 2 3 欲求 tx=tv=-5时对应的值,可用试验法及内插法确定。 第一步假设 tcv=14.5 kn,得 tx=-5.59 第二步假设 tcv=14 kn,得 tx=-1.91 由内插法求得 tv=-5时对应的 tcv值为: (2- )(42.14 59 . 5 91 . 1 59 . 5 5 5 . 1414 5 . 14kntcv 28) tcmax=15 kn tcv 最大风速出现时,承力索不致遭到破坏,所选择的计算起始条件正确。 2.3.6.2 承力索

32、覆冰时的张力 起始条件:t1=tmin=-10, (kn/m) 3 1 1045.211 co j o t t gw z1=tcmax+ tj=19.8 (kn) 待求条件:tx=tv=-5,zx=tcv+tj= tcv +4.8 (kn) (2-29) co jo bx t tg gw )/(1077.24 3 . 12 1848 . 0 1043.15 1075.18 3 3 3 mkn 将以上数据代入链形悬挂状态方程,得 (2-30) es t z lw es t z lwt t cx x xc x 2 22 1 2 1 22 11 2424 cb cb cb cb t t t t 88

33、 . 5 8 . 4 4 . 6444 91.65 2 . 72 2 . 19610128 . 4101224 551077.24 2 . 72 2 . 1961012 15 8 . 19101224 551045.2110 2 62 6 2 2 3 626 2 2 3 欲求 tx=tb=-5时对应的 tcb值,其方法同上。经解得,tcb=14.89(kn) tcmax=15kntcb 在覆冰时,承力索不致遭到破坏,所选择的计算起始条件正确。 2.4关于张力差tj=f(l)曲线计算 2.4.1 直线区段 (2-31) )(259 . 1 662 . 0 3 2 7 . 1 3 2 33 min

34、 m fh f fh f cc o o o o 跨距 l 取为 65m,则 6 2 22 2 22 min 1008 . 1 653 012 . 0 043 . 0 3 3 8 l ff dt (2-32)c tt tttt d 25 2 1040 40 2 minmax maxmax1 (2-33)c tt tttt d 25 2 1040 10 2 minmax minmin2 |t1|=|t1| jt=1710-6251.0810-6 =423.9210-6 t (2-34) 259 . 1 2 1092.423109 . 865 2 6 3 ll c tglll t jj jd (kn

35、)lll 6 10498 . 1 2.4.2 曲线区段 2.4.2.1.r=400m,取 l=45m,d=1.5m,tjm=10 kn =8/(3452)(0.02120.0062) =0.5310-6 jt=1710-6250.5310-6 (2- 35) =424.2710-6 3 2 5 . 02 jd jm jd t ttlllrd tlll t 2.4.2.2 )( 3 2 10451024.2121200 104747.42445 3 2 10104747.424455 . 05 . 14002 104747.42445 6 6 6 6 kn tll ll tll ll jd jd

36、 2.4.2.3 r=800m,取 l=60m,d=1.5m,tjm=10 kn =8/(3602)(0.03620.012) =0.8910-6 (2-36) jd jw tll ll t 3 2 101011.424605 . 05 . 18002 1011.42460 6 6 )( 3 2 10601006.2122400 1011.42460 6 6 kn tll ll jd 在直线区段由于考虑接触线的弹性伸长,而采用下述公式: (2-37) 3 2 3 2 2 jd jm j jj jf t tt es glll c tglll t )( 1233 . 0 1 1092.423100

37、53.3127 2 1 3 2 1 6 kn t t t t tes t t jd jd jd jd j jd jd 在曲线区段若引入弹性变形的影响,则 (2- tes tt tt t j jwjd jwjd jf 3 2 1 38) r=400m 时, (2- 6 1047.42410053.1273 2 1 jwjd jwjd jf tt tt t 39) jwjd jwjd tt tt 1232 . 0 1 r=800m 时, (2- 6 1011.42410053.1273 2 1 jwjd jwjd jf tt tt t 40) jwjd jwjd tt tt 1233 . 0 1

38、将tjd tjw tjde tje 随着半个锚段长度 lx而变化的情况列于表 24 表 2-4 接触线张力增量 tj随 lx变化情况表 2.5 绘制tje、tjde随lx而变化的曲线(附录四:图4) 设三种不同曲线半径的线路按照 r=,r=400m,r=800m 的顺序连接。 lx(m)100200300400500600700800900 tjd(kn) 0.0250.0790.160.280.420.600.801.041.30 r=400m0.0190.110.270.500.801.161.582.062.60 tjw (kn) r=800m0.0070.050.130.240.390

39、.580.801.061.36 tjde(kn) 0.030.080.160.290.440.650.891.191.55 r=400m0.040.190.450.861.442.253.375.027.50 tje (kn) r=800m0.030.130.300.560.901.381.992.833.96 第一种情况,中心锚结设在 r=处,则 tj=tj1+tj2+tj3=0.1+1.14+1.48=2.72(kn) (2- 41) 第二种情况,中心锚结设在 r=800m 处,则 tj=tj1+tj2+tj3=0.2+0.34+2.66=3.2(kn) (2- 42) 第三种情况,中心锚

40、结设在 r=400m 处,则 tj=tj1+tj2+tj3=0.3+0.7+0.58=1.58(kn) (2- 43) 根据上述三种情况,可以得出以下四点结论: 1) 在接触网平面设计中,中心锚结应尽量设置在曲线区段,并尽量设置在小 曲线半径区段。 2) 锚段关节尽量避免设置在小曲线半径上,最好放在直线区段。 3) 考虑线路的复杂情况,中心锚结允许偏向一侧,一般偏于曲线一侧。 4) 中心锚结两侧的 tj,应尽量相等,但允许有一定差值。 第 3 章 接触线的受风偏移较核 要使接触线良好地工作,就要保证在受风作用下,接触线对受电弓中心线 的受风偏移值不超过其规定的最大许可值,因此须对接触线最大风偏

41、移值进行 校核。 取设计图中第 58 号至第 59 号支柱所在跨距进行校验,此跨距全部位于曲 线半径 r=400m 的曲线上。 跨距 l=45m,m=0.9,rj=0.02m,a=400 则 (3-1) j j j j rt mp l b 1 8 2 max )(367 . 0 02. 04 . 0 400 1 10 10023. 59 . 0 8 45 3 2 m 因 bjmaxbjx=0.45(m),所以接触线满足风稳定要求。 第 4 章 支柱 腕臂 基础校核 为了校核支柱容量,腕臂强度以及基础的稳定性,选取设计图中受力情况 最严重的第 58 号支柱进行校验。 4.1支柱容量校核 4.1.

42、1 支柱及其腕臂的水平和垂直负载 4.1.1.1 垂直负载 (1)、悬挂结构自重负载:qo=0.6 (kn) (2)、链形悬挂重量: g1=g2=q0l (4-1) =15.4310-3(45+45)2=0.694 (kn) 4.1.1.2 水平负载 (1)、支柱本身的风负载: p0=0.61510-3kfv2 (4-2) =0.61510-31.48.20.291252 =1.284(kn) (2)、线索传给支柱的风负载: 1)接触线的风负载: pj1=pj2=pjl (4-3) =5.02310-3(45+45)2 =0.226 (kn) 2)承力索的风负载: pc1=pc2=pcvl (

43、4-4) =4.49210-3(45+45)2 =0.202 (kn) 4.1.1.3 曲线形成的水平分力: 1) 接触线的曲线水平分力: (4-5)(125 . 1 400 4510 21 kn r lt pp j jrjr 2) 承力索的曲线水平分力: )(688 . 1 400 4515 max 21 kn r lt pp c jrjr 4.1.1.4 下锚分力:由于是同侧下锚,且锚柱位于曲线内侧,则 )(415 . 3 63 . 0 2 1 1 . 3 2 1 m a cb x 1)接触线下锚分力: )(322 . 1 45 415 . 3 4002 45 10 2 1 2 kn l

44、b r tp jjm 2)承力索的下锚分力: )(983 . 1 45 415 . 3 4002 45 15 2 1 22 kn l b r tp cmcm 4.1.2 支柱容量校验 以上负载分布图中,各标注尺寸分别为: h=8.2m,hj1=6.6m,hj2=6.8m,hc1=8.05m,hc2=7.9m,z1=3.665m,z2=3.415m 则支柱地面线处所受的弯矩如下: m=1/2hp0+hj1(pj1+pjr1)+hj2(pj2+pjr2+pjm2)+hc1(pc1+pr1)+ hc2(pc2+pcr2+pcm2) 1/2z2q0z1g1z2g2 (4-10) =1/28.21.28

45、4+6.6(0.226+1.125)+6.8(0.226+1.125+1.322)+8.05(0.202+1.6 88)+7.9(0.202+1.688+1.983)1/23.4150.63.6650.6943.4150.694 =72.23 (knm) 78 (knm) 则所选支柱容量符合要求。 其余类型支柱容量校验方法同上,此处省略。 4.2腕臂强度校核 4.2.1 确定着力点 图 4-2 腕臂强度校核 53 . 0 20003200 2000 sin 22 848 . 0 sin1cos 2 (4-11)(1038 sin 550 1 mml (4-12)(2736 sin 2000 1

46、2 mmll (4-13)(283 sin 150 3 mml pjm2pjr2pj2pjr1pj1 4.2.2 对各力进行分解 图 4-3 各力进行分解 1 设 p1=pj1pjr1pj2pjr2pjm2 (4-14) =0.2261.1250.2261.1251.322 =4.024(kn) p2=pc2pcr2pcm2=0.2021.6881.983 (4-15) =3.873(kn) p3=pc1pcr1=0.2021.688 (4-16) =1.89(kn) 则得到上图腕臂的受力分解图为: 图 4-4 各力进行分解 2 求各分力数值如下: p1x= p1cos=4.0240.848=

47、3.412kn (4-16) p1y= p1sin=4.0240.53=2.133kn (4-17) qox= q0sin=0.60.53=0.318kn , (4-18) q0y= q0cos=0.60.848=0.509kn (4-19) p2x= p2cos=3.8730.848=3.284kn , (4-20) p2y= p2sin=3.8730.53=2.053kn (4-21) g2x=g2sin=0.6940.53=0.368kn, (4-22) g2y= g2cos=0.6940.848=0.589kn (4-23) p3x=p3cos (4-24) =1.890.848=1.

48、603kn , p3y= p3sin (4-25) =1.890.53=1.002kn g1x= g1sin=0.6940.53=0.368kn, (4-26) g1y= g1cos=0.6940.848=0.589kn (4-27) l3l2l1 在上图中,由fy=0,即(typ1yp2yp3y)(q0yg2yg1y)=0 (4-28) 则 ty=t sin=(q0yg2yg1y)(p1yp2yp3y) (4-29) =(0.5090.5890.589)(2.1332.0531.002)=3.501 (4-30)(606 . 6 53 . 0 501. 3 sin kn t t y (4-3

49、1)(602 . 5 848. 0606 . 6 cosknttx 由fx=0,即 rax(p1xq0 xp2xg2xp3xg1xtx)=0 (4-32) 则 rax= p1xq0 x p2xg2xp3xg1xtx (4-33) =3.4120.3183.2840.3681.6030.3685.602 =3.751(kn) 4.2.3 求最大弯矩及最大轴力 4.2.3.1 求最大弯矩 由受力分解图可知: mb=( p1yq0y)l1=(2.1330.509)1.038 (4-34) =1.686(kn.m) mc= mb(p2ytyg2y)( l1l2) (4-35) =1.686(2.053

50、3.5010.589)(1.0382.736) =6.002(kn.m) md= mc(p3yg1y)( l1l2l3) (4-36) =6.002(1.0020.589)(1.0382.7360.283) =4.326(kn.m) 由此可见 c 处弯矩最大,其值 mmax=|mc|=6.002 (kn.m) 4.2.3.2 求最大轴力 ab 段:nab=rax=3.751 (kn) bc 段:nbc=rax(p1xq0 x) =3.751(3.4120.318)=0.021 (kn) cd 段:ncd=nbc(tx+p2x+g2x) =0.021(-5.602+3.284+0.363)=1.

51、971 (kn) de 段:nde=ncd(p3x+g1x) =1.971(1.603+0.368)=0 (kn) 由此可见 ab 段轴力最大。 4.2.4 强度校核 (4-37) 432 3 max 3 maxmaxmax d n d m f n w m z 压 mpa 3 . 284 1063 . 1106283 4 33106014 . 3 103751 . 3 32 33106014 . 3 103002 . 6 钢允许受压强度=380470 mpa 压 腕臂不会受强度破坏。 4.3基础稳定性校核 4.3.1 计算换算水平力和换算水平高度 4.3.1.1、支柱换算水平高度:h=26.1

52、=12.2 m 4.3.1.2、换算水平力:s0=mh/h=78/12.2=6.39 kn (4- 38) 4.3.2 求极限载荷 4.3.2.1、极限水平力:pj=k0s0=1.56.39=9.585 kn 4.3.2.2、极限垂直力(包括支柱自重负载和悬挂垂直负载): qj=qh+q0+2z1=16.2+0.6+20.694=18.188 kn (4-39) 4.3.3 基础计算 mj=m1+m2+m3 (4-40) fee a fhevheeh 1 0 3 2 1 3 2 8 . 0 212 2 213 2 而 b=kb0=1.90.291=0.553 m(查表 621 得) e=1/2

53、mbh2=1/2810.55332=202 kn (4-41) e1=2cbhtg(450+/2)=0 ( c=0) v3=(qj-fpj)2e(1+f2) (4-42) (18.188-0.59.585)/(1+0.52)=10.72 kn 2=(pj+fqj)/2e(1+f2)+1/2 (4-43) =(9.585+0.5+18.188)/2202(1+0.52)+1/2=0.537 故 3=0.394 e=a0/2v3/2b0r (4-44) 0.67/210.72/(20.291400)=0.289 m 所以 mj=2/32023.0(120.394)0 10.72(0.2890.53

54、0.80.67/2(2020)0.5 85.65 019.1827.07131.9 (knm) 因此,基础的容许工作力矩为 m=mj/k0=131.9/1.5=87.93 (knm) (4- 45) 而 mh=78 knmm= 87.93(knm) 故此基础安全,不需加横卧板。 总之,通过第二章及第三章的各项校核可知,所选定的支柱跨距设置和支柱材 料以及各种技术数据均符合要求。 第 5 章 接触网平面设计原则 接触网平面设计是分别按每一个车站、每一个区间单独地进行设计。其主 要内容包括:支柱位置及类型;锚段划分;拉出值大小及方向;支柱侧面限界; 支柱装置结构及位置;接触线高度、悬挂类型、接地形

55、式、防护要求;附加导 线架设;特殊设计及工程数量统计等。 5.1 站场接触网平面设计 站场接触网平面设计的主要依据是站场平面图。此外,还包括站场所辖的 桥梁、涵洞和隧道等图表。 5.1.1 站场平面设计的内容和次序 首先将车站的有关部分描绘制图。包括描绘和记录站场全部股道(非电化线路 及远期规划线路在内) ,各道岔岔心位置及里程、道岔编号及型号,线路曲线区段的 首尾、半径、缓和曲线的长度、股道的编号及间距、站场中心里程标志;还应包括 桥梁、涵洞、站台及其有关房舍建筑物的位置等。比例尺一般采用 1:1000 或 1:2000。 1、布置支柱,应先从站场两端道岔集中的地段布置,然后向车站中心布置,

56、最 后完成两端道岔集中区段外侧的支柱布置。 2、确定锚段长度及经路,选择并确定下锚地点和中心锚结地点。 3、确定接触线拉出值(或之字值) ,同布置支柱一样,也从道岔集中地段开始。 4、确定电分段及隔离开关的安设位置。 5、编排支柱号码,一般由上行至下行方向顺序排列。 6、将选定的材料设备统计数量并列表说明。 上述布置次序可以交叉进行。 5.1.2 站场平面设计的原则及注意事项 1、车站两侧道岔集中区段,一般设置绝缘软横跨,不采用硬横梁或双线路腕臂。 因为硬横梁和双线路腕臂都是接地的,维修不如软横跨安全方便,且易影响了望信 号。 2、站场股道数不超过五股时,软横跨支柱可用钢筋混凝土支柱;超过五股

57、道时, 则应采用钢柱。软横跨柱可以在背面兼挂腕臂。 3、软横跨跨越股道数超过 8 股道时,且股道间距也容许的话,应在中间增设一 棵软横跨柱。该增设支柱类型应按较大一侧的负荷容量来决定。 4、两组软横跨间的跨距应尽可能地接近最大跨距值(计算允许值)以减少大型 支柱的数量。相邻跨距不等时,小跨距不应小于大跨距的 75%。如果实际跨距与原 计算跨距值不符合,则在确定接触线的拉出值时,还应验算其受风偏移值。 5、在道岔处,特别是正线道岔处,首先考虑将支柱安设在标准定位处并且尽量 不采用定位立柱的方式,其次再考虑非标准定位或是立定位柱。当采用非标准定位 时,一般应在标准定位处的全尖侧。 6、在确定锚段径

58、路时,线岔处接触线最好采用一次交叉的方式,尽量不采用二 次交叉的方式,以提高供电质量。无交叉的线岔易刮坏受电弓且不易检调,故不宜 采用。相邻两组线岔间接触悬挂以布置成平行状为好。线岔处接触线拉出值一般不 超过 450;在低速道岔上允许不定位,但两侧定位点间的接触线应是拉直的,其 非工作支离股道中心较远时,要注意不使腕臂和定位器加得太长。 7、基本站台或中间站台上的支柱,其边缘至站台边的距离应分别不小于 4 米 或 2 米。 8、车站两端,一般应设绝缘锚段关节。若地形困难或在三股道及以下的小站, 允许仅在一端设置绝缘锚段关节。 9、在牵引变电所及分区亭附近,应设置分相绝缘装置,分相绝缘装置的位置

59、要 考虑站场调车作业的方便,并避免设在大坡道上。 10、车站两端的绝缘关节,一般应设在最外道岔与进站信号机之间,并要求靠 站场侧的转换支柱距离正线上最外一组道岔的岔尖(向站外)最少不小于 50 米,以 便于机车的转线。 11、在绝缘锚段关节处,对于装有隔离开关的支柱(一般为转换支柱)该关节 的锚柱应与此支柱在同一侧,以便安装电连接线。 对于站场远期预留电化线路,软横跨支柱的侧限应考虑预留,且支柱的容量也应予 考虑。 12、布置锚段时,正线应是独立的锚段。站场中接触网的一些渡线应尽量合并 到别的锚段中去,不得已时也可自成一个锚段。 13、站场内正线上的接触线应采用或者同等张力的其他接触线;侧线、

60、支线、 专用线的接触线可采用型或同等张力的接触线。接触线改变方向时与原方向的尖角 一般不超过 6 度,困难情况下不得超过 8 度。 14、当采用全补偿链形悬挂时,中心锚结绳下锚的支柱应用钢支柱,且中心锚 结转角支柱的容量也应增大。 15、直线锚段的中心锚结应设在锚段中部,当锚段有曲线且曲线较长时,中心 锚结应设在曲线半径小、曲线长的一侧。 16、接触线拉出值一般应从道岔集中地段开始布置,如果最后碰到直线区段的 相邻定位为同方向拉出时,可使两边跨距较小的支柱定位处拉出值为零或采取其他 措施。 17、站场支柱的编号一般是顺着公里标方向,从上行到下行,先左侧后右侧的 顺序编排号码的。 5.2 区间接

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论