直线与平面垂直的判定说课稿_第1页
直线与平面垂直的判定说课稿_第2页
直线与平面垂直的判定说课稿_第3页
直线与平面垂直的判定说课稿_第4页
直线与平面垂直的判定说课稿_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、直线与平面垂直的判定说课稿 李凯帆 本节课是人教版普通高中课程标准实验教科书数学( A版)必修2第 三节“ 2.3.1直线与平面垂直的判定”的第一课时。下面,我将分别从教材分析、 学情分析、教法与学法分析、教学过程设计、教学反思五个方面对本节课进行说 明。 一、教材分析 1 内容、地位与作用 直线与平面垂直是直线和平面相交中的一种特殊情况, 是空间中直线与直线 垂直位置关系的拓展,又是平面与平面垂直的基础,是空间中垂直位置关系间转 化的重心,同时又是直线和平面所成的角等内容的基础, 因而它是空间点、直线、 平面间位置关系中的核心概念之一. 本节课是在学习了空间点、直线、平面之间的位置关系和直线

2、与平面平行的 判定及其性质之后进行的,其主要内容是直线与平面垂直的定义、直线与平面垂 直的判定定理及其应用。 其中,线面垂直的定义是线面垂直最基本的判定方法和性质,它是探究线面垂直 判定定理的基础;线面垂直的判定定理充分体现了线线垂直与线面垂直之间的转 化,它既是后面学习面面垂直的基础,又是连接线线垂直和面面垂直的纽带! 学好这部分内容,对于学生建立空间观念、实现从认识平面图形到认识立体 图形的飞跃, 是非常重要的. 2. 教学目标 数学课程标准指出本节课学习目标是:通过直观感知、操作确认,归纳 出线面垂直的判定定理;能运用判定定理证明一些空间位置关系的简单命题.考 虑到本校学生的接受能力和课

3、容量,本节课只要求学生在构建线面垂直定义的基 础上探究线面垂直的判定定理,并进行定理的初步运用.故而确立以下教学目标: (1) 知识与技能 通过直观感知、操作确认,理解线面垂直的定义,归纳线面垂直的判定定理, 并能运用定义和定理证明一些空间位置关系的简单命题。 (2) 过程与方法 通过线面垂直定义及定理的探究过程,感知几何直观能力和抽象概括能力, 体会转化思想在解决问题中的运用 (3) 情感、态度与价值观 通过线面垂直定义及定理的探究,让学生亲身经历数学研究的过程, 体验探 索的乐趣,增强学习数学的兴趣。 3. 教学重点和难点 根据教学大纲的要求以及学生的实际情况,确定如下: 重点:通过操作概

4、括直线与平面垂直的定义和判定定理 难点:操作确认直线与平面垂直的判定定理 二、学情分析 学习本课前,学生已经通过直观感知、操作确认的方法,学习了直线与平面 平行的判定定理,对空间概念建立有一定基础。但是,学生的抽象概括能力、空 间想象力还有待提高。线面垂直的定义比较抽象,平面内看不到直线,要让学生 去体会“与平面内所有直线垂直”就有一定困难;同时,线面垂直判定定理的发 现具有一定的隐蔽性,学生不易想到。 高二年级的学生,已具有一定的想象能力和分析问题、 解决问题的能力,但 尽管思维活跃,敏捷,但却缺乏冷静、思考,因而片面,不够严谨。仍需依赖一 定的具体形象的经验材料来理解抽象的逻辑关系。 三、

5、教法与学法分析 本节课内容是学生空间观念形成的关键时期,课堂上充分利用现实情境,学 生通过感知、观察,提炼直线与平面垂直的定义;进一步,在一个具体的数学问 题情景中设想,并在教师指导下,动手操作,观察分析,自主探索等活动,切实 感受直线与平面垂直判定定理的形成过程,体会蕴含在其中的思想方法。 采用启发式、引导式、参与式的教学方法,引导学生进行自主尝试和探究; 引导学生采用自主探索与互相协作相结合的学习方式。 四、教学过程设计 环节 教学过程及内容 设计意图 复习 引入 提冋: 1. 直线和平面具有哪些位置关系? 2. 在我们的身边有没有能反映出直线和平面垂直位 置关系的实际例子呢?(通过课件给

6、出几个现实生活 中线面垂直的例子) 问题1复习线面的位 置关系;问题2由实 例到图片,直观感知 线面垂直的位置关 系,建立初步印象, 为下面对线面垂直 定义的探究做准备 (1)创设情 境一感知概 念 1. 旗杆所在直线与地面所在平面垂直, 那么旗杆与其在地面的影子有何位置关 系? 2. 将书打开直立于桌面,观察书脊与桌 面的位置关系,书脊与每一书页下边缘 有何位置关系? 3. 条直线与一个平面垂直,那么这条 直线与平面内的直线有什么样的位置关 系? 通过实例让学生直 观感知线面垂直的 位置关系,引导学生 观察这条直线与平 面内直线的位置关 系,将线面垂直问题 转化为考察直线和 平面内直线的关系

7、, 为得出线面垂直的 定义作准备。 (引导学生自己归纳直线与平面垂直的 定义) 探究1: 直线与平 面垂直的 定义 (2)观察归 纳一形成概 念 / P / 充分发挥学生的主 观能动性,提咼抽象 概括能力,让学生体 验成功的喜悦。 1如果一条直线1 和一个平面a内的任意一条直线都垂 直,我们就说直线1和平面a互相垂直. 记作:1丄a 1叫做a的垂线,a叫做1的垂面, l与a的唯一公共点P叫做垂足。 (3)辨析讨 论一深化概 念 下列命题是否正确?为什么? (1) 如果一条直线垂直于平面内的无数 条直线,那么这条直线与这个平面垂直。 (2) 如果一条直线与一个平面垂直,那 么这条直线垂直于这个平

8、面内的所有直 线。 通过问题的辨析和 讨论,加深概念的理 解,掌握概念的本 质。由(1)使学生 明确定义中的“任 意”和“无数”的不 同;由(2)使学生 明确,线面垂直的定 义既是线面垂直的 判疋又是基本性质。 1.学校广场上新立一旗杆,现在要检验 它是否与地面垂直,请同学想想办法? 2.折纸实验:过 ABC的顶点A翻折 纸片,得到折痕 AD,再将翻折后的纸 片竖起放置在桌面上(BD、DC与桌面 探究2:直 线与平面 垂直的判 定定理 接触)。折痕AD与桌面垂直吗?如何翻 折才能使折痕AD与桌面所在的平面垂 直? (引导学生自己归纳直线与平面垂直的 判定定理) 一条直线与一个平面内的两条相交

9、直线都垂直,则该直线与此平面垂直。 m 二: n 二: m n = P = l _ : I _ m l _n 下列命题是否正确?为什么? 如果一条直线与平面内的两条平行直 线都垂直,那么该直线垂直与这个平面 例1、平行四边形ABCD所在平面外有一点P,O是对 角线AC与BD的交点,且 PA=PC PB=PD求证:POL 平面ABCD P 定理的初 步应用 例2、如图,已知a / b,a丄a。求证:b a。 练习:课本P67练习1 问题1让学生明确可 以由线面垂直的定 义来判定线面垂直, 但是实用性较差。 问题2借助学生熟悉 的生活中最简单的 经验,引导学生分 析,将与平面内所 有直线垂直”逐步

10、转 化为与平面内两条 相交直线垂直”,并 以此为基础,进行合 情推理,提出猜想, 使学生的思维顺畅, 为进一步的探究做 准备。 学生叙写判定定理, 给出文字、图形、符 号这三种语言的相 互转化,训练三种语 言相互转化的能力。 通过辨析,强调定理 中“两条相交直线” 的条件。 例1感受如何运用线 面垂直的判定定理 解决问题,明确定理 运用的条件和具体 步骤,培养学生严谨 的逻辑推理。 例2感受线面垂直的 定义与判定定理的 综合运用,展示了平 行与垂直之间的转 化和联系,给出判断 线面垂直的一种间 接方法。 课堂小结 1、通过本节课的学习,你学会了哪些判断直线与平面 垂直的方法?各是什么?用数学语

11、言叙述。 通过小结使本节课 的知识系统化,使学 生深刻理解数学思 想方法在解题中的 地位和应用,培养学 生认真总结的学习 习惯。 2、 在证明线面垂直时应注意哪些问题? 作业布置 五、教学反思 在这节课结束之后,我及时对教学过程进行回顾,总结出自认为的成功之处 和不足之处。 成功之处:达到了预期目标,学生能理解线面垂直的定义及判定定理,并能 进行一些简单的应用;把学习的主动权还给学生,让学生自主经历发现问题、研 究问题、解决问题的学习过程,使数学课堂生动起来,师生之间的真诚互动凸现 出民主和谐。在学生已经直观感知直线与平面垂直的基础上让学生亲自动手试 验,探究、体验,使其经历知识的形成过程。在操作活动中,鼓励学生进行合理 的想象和猜测,探究直线与平面垂直的条件,感受获得新知识的愉悦,使之达到 自主参与、自觉发现、自我完善、自行掌握知识的目的,并且对数学产生了亲切 感,提高了探索问题的积极性,从而感受到数学的巨大魅力,培养了学生的数学 应用意识和实践能力。 不足之处:复习引入稍嫌过快,回顾线面的各种位置关系时应该相应给出 生活实例,以便形成对比,加深学生对线面各种位置关系的直 观

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论