




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、流水行船问题的公式和例題流水问题是研究船在流水中的行程问题,因此,又叫行船问题。在小学数学中涉及到的题目,一般是匀速运动 的问题。这类问题的主要特点是,水速在船逆行和顺行中的作用不同。流水问题有如卜两个基本公式:烦水速度=船速+水速(1)逆水速度二船速水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速足指船本身的速度,也就是船在静水中单位时 间里所行的路程:水速是指水在单位时间里流过的路程-公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度Z和。这是因为顺水时,船一方面按 自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度
2、等于船速 与水速之和。公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。由公式(1)可得:(3)(4)根据加减互为逆运算的原理,水速=水速度船速船速二顺水速度水速由公式(2)可得:(6)水速二船速-逆水速度船速=逆水速度+水速这就足说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。另外,己知某船的逆水速度和顺水速度,还可以求出船速和水速。因为顺水速度就是船速与水速之和,逆水速 度就是船速与水速之差,根据和差问题的算法,町知:船速=(顺水速度+逆水速度)4-2(7)水速=(顺水速度逆水速度)-2(8)例1 一只油船顺水行25米,用了 5小
3、时,水流的速度是每小时1千米。此船在静水中的速度是多少?(适 于高年级程度)解:此船的顺水速度是:254-5=5 (千米/小时)W为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。5-1=4(T米/小时)综介算式:2545-1-4(T-米/小时)答:此船在静水中每小时行4米。*例2 只渔船在静水中每小时航行4 r米,逆水4小时航行12千米。水流的速度是每小时多少T米?(适于 高年级程度)解:此船在逆水中的速度是:12子4=3 (千米/小时)冈为逆水速度二船速水速,所以水速二船速-逆水速度,即:4-3=1(T米 / 小时)答:水流速度是每小时1千米。例3 只船,顺水毎小时
4、行20米,逆水毎小时行12千米。这只船在静水中的速度和水流的速度各是多少? (适于高年级程度)解:因为船在静水中的速度=(顺水速度+逆水速度)子2,所以,这只船在静水中的速度是:(20+12) 4-2=16 (千米/小时)因为水流的速度=(顺水速度-逆水速度)三2,所以水流的逑度是:(20-12)三2二4 (米/小时)答略。例4某船在静水中每小时行18米,水流速度是每小时2千米。此船从甲地逆水航行到乙地需要15小时. 求甲、乙两地的路程是多少米?此船从乙地回到甲地需要多少小时?(适于高年级程度)解:此船逆水航行的速度是:18-2=16 ( F米/小时)甲乙两地的路程是:16X15=240 (
5、T米)此船顺水航行的速度是:18+2=20 (千米/小时)此船从乙地回到甲地需要的时间是:2404-20=12 (小时)答略。例5某船在静水中的速度是每小时15米,它从上游甲港开往乙港共用8小时。已知水速为每小时3米。 此船从乙港返回甲港需要多少小时?(适于高年级程度)解:此船顺水的速度是:15+3=18 (千米/小时)甲乙两港之间的路程是:18X8=144 ( V 米)此船逆水航行的速度是:15-3=12 ( T咪/小时)此船从乙港返回甲港需要的时间是:144 4-12=12 (小时)综介算式:(15+3) X84- (15-3)=1444-12=12 (小时)答略。例6甲、乙两个码头相距1
6、44咪,一艘汽艇在静水中每小时行20千米,水流速度是每小时4千米。求由甲 码头到乙码头顺水而行需要几小时,由乙码头到甲码头逆水而行需要多少小时?(适于髙年级程度)解:顺水而行的时间是:144 十(20+4) =6 (小时)逆水而行的时间是:144 m (20-4) =9 (小时)答略。*例7 条大河,河中间(主航道的水流速度是每小时8T米,沿冷边的水流速度足每小时6米。只船 在河中间顺流而卜,6.5小时行驶260米。求这只船沿岸边返回原地需要多少小时?(适于高年级程度)解:此船颠流而卜的速度是:2604-6.5=40 ( T米/小时)此船在静水中的速度是:40-8=32 ( F米/小时)此船沿
7、卅边逆水而行的速度是:32-6=26 (下米/小时)此船沿岸边返回原地需要的时间是:2604-26=10 (小时)综合算式:2604- (2604-6.5-8-6)=2604- (40-8-6)=260226=10 (小时)答略。例8 一只船在水流速度是2500米/小时的水中航行,逆水行120 T咪用24小时。顺水行150千米需要多少小 时?(适于高年级程度)解:此船逆水航行的速度是:12000024=5000 (米/小时)此船在静水中航行的速度是:5000+2500=7500 (米/小时)此船顺水航行的速度是:7500+2500=10000 (米/小时)顺水航行150 T米需要的时间是:15
8、00004-10000=15 (小时)综合算式:1500004- (1200004-24+2500X2)=1500004- (5000+5000)=150000-MOOOO=15 (小时)答略。*例9 一只轮船在208米长的水路中航行。顺水用8小时,逆水用13小时。求船在静水中的速度及水流的速 度。(适于高年级程度)解:此船额水航行的速度是:2084-8=26 (千米/小时)此船逆水航行的速度是:2084-13=16(千米/小时)由公式船速=(顺水速度+逆水速度)三2,可求出此船在静水中的速度是:(26+16) 4-2=21 (千米/小时)4-2.可求出水流的速度是:由公式水速=(顺水速度逆水
9、速度)(26-16) 4-2=5 (千米/小时)甲船逆水行全程用18小时,乙船逆水行全程用15小时。甲船顺水行全程 (适于高年级程度)答略a例10 A、B两个码头相距180米。用10小时.乙船顺水行全程用几小时?解:甲船逆水航行的速度是:1804-18=10 ( T米/小时)甲船顺水航行的速度是:180 :-10-18 (米/小时)根据水速=(顺水速度-逆水速度)十2,求出水流速度:(18-10) 4-2=4 (千米/小时)乙船逆水航行的速度是:1804-15=12 (千米/小时)乙船顺水航行的速度是:12+4X2=20 (下米/小时)乙船顺水行全程要用的时间是:1804-20=9 (小时)综
10、合算式:180-?1804-15+ (180-10-18018)十2X3=180-r12+ (18-10)十2X2=180-(12+8=180-=-20=9 (小时)1、一只油轮,逆流而行,每小时行12米,7小时可以到达乙港从乙港返航需要6小时,求船在静水中的速度 和水流速度?分析:逆流而行毎小时行12千米,7小时时到达乙港,町求出甲乙两港路程:12X7 = 84 (米),返航是顺水,要 6小时,町求出顺水速度是:846 = 14(T咪),顺速一逆速=2个水速,可求出水流速度(14-12) 4-2 = 1 ( T米),W而可求出船的静水速度。解:(12X7=6-12)三2 = 222 = 1
11、( T米)12 + :1 = :13 ( T米)答:船在静水中的速度是每小时13千米,水流速度是每小时1千米。2、某船在静水屮的速度是每小时15千米,河水流速为每小时5米。这只船在甲、乙两港之间往返一次,共用去 6小时。求甲、乙两港之间的航程是多少V米?分析:往返的时间比与速度成反比。即速度比是1020 = 1: 2,那么所用时间比为2: 1 C 按比例分配町求往返各用的时间,逆水时间为6十(2 4 1) X2 = 4 (小时),再根据速度1、知道船在静水中速度和水流速度,町求船逆水速度15-5 = 10 ( T-米),顺水速度15 + 5 = 20 (千米)。2、甲、乙两港路程一定,3、根据
12、往返共用6小时,乘以时间求出路程。=1: 2解: (15 5): (15 + 5) 6-r (2 + 1) X2=6-=-3X2 = 4 (小时)(15-5) X4=10X4=40 ( V米)答:甲、乙两港之间的航程是40 r米。3、一只船从甲地开往乙地,逆水航行,每小时行24米,到达乙地后,又从乙地返回甲地,比逆水航行提前2. 5 小时到达。已知水流速度是每小时3米,甲、乙两地间的距离足多少千米?分析:逆水每小时行24米,水速每小时3下米,那么顺水速度是每小时24 t 3X2 = 30 ( T-米,比逆水提前2.5 小时,若行逆水那么多时间,就可多行30X2. 5=75(T米),因每小时多行
13、3X2 = 6 (千米),几小时才务行75 米,这就是逆水时间。解:24 + 3X2=30 (千米)24X30X2.5-r (3X2) = 24X 30X 2. 54-6 = 24X 12. 5 = 300(T 米)答:甲、乙两地间的距离是300 r米.4、一轮船在甲、乙两个码头之间航行,顺水航行要8小时行完全程,逆水航行要10小时行完全程。己知水流速度 是每小时3米,求甲、乙两码头之间的距离?分析:顺水航行8小时,比逆水航行8小时可多行6X8=48(T米),而这48米正好是逆水(108)小时所行 的路程,可求出逆水速度484-2 = 24 (千米),进而町求出距离.解:3X2X84- (10-8) =3X2X8十2 = 24 (千米)24X10=240 (千米)答:甲、乙两码头之间的距离Sl 240 r米。解法二:设两码头的距离为“1”,顺水每小吋行,逆水每小吋行,顺水比逆水每小吋快,快6米,对应.3X24- (-) =64-=24 0 ( T咪)答:(略)5、某河冇相距12 0 T米的上下两个码头,每天定时仃甲、乙两艘同样速度的客船从上、下两个码头同时相对开出。 这天,从甲船上落卞一个漂浮物,此物顺水漂浮而下,5分钟后,与甲船相距2 T咪,预计乙船出发几小时后,町 与漂浮物相遇?分析:从甲船落卜的漂浮物,噸水而下,速度是“水速”,甲顺水
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司新增入股合同协议书
- 2025年超精过滤设备项目合作计划书
- 广东省广州市华侨、协和、增城中学等三校2024~2025学年高一下学期期中考试数学试卷(原卷版)
- 2025年CATV QAM调制器合作协议书
- 2025年防雷工程项目建议书
- 珠宝设计师创意策划项目劳务合同
- 医药行业药品供应链融资服务合同
- 学前教育机构选择权委托合同
- 基坑自动化监测预警系统施工与环保措施合同
- 全屋定制家具设计与施工监理合同
- 《医学影像诊断学》分章节试题库含答案大全
- 检针机九点测试方法示意图
- 申根签证申请表
- 知识点一RLC串联电路的电压关系
- 淘宝运营转正考试题及答案
- 《机器人技术及应用》教学大纲
- NY 529-2002兽医注射针
- JJG 596-2012电子式交流电能表
- GB/T 6495.1-1996光伏器件第1部分:光伏电流-电压特性的测量
- GB/T 39862-2021高热导率陶瓷导热系数的检测
- GB/T 33289-2016馆藏砖石文物保护修复记录规范
评论
0/150
提交评论