




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、矩阵论结课作业基于设计结构矩阵的业务流程重组学 院:数学与统计学院学 号: 姓 名: 冯 欣指导老师: 尹小艳二一四 年 十 月摘 要本文主要对设计结构矩阵(DSM)和业务流程重组(BPM)进行概述并将设计结构矩阵应用于业务流程优化问题中,提出了实值设计结构矩阵,并将其应用于最短路径问题,最后引例对仓储物流系统流程问题进行仿真,说明实值DSM 算法的性能大大提高,对于不同网络和不同的参数都能取得较好的运行结果。设计结构矩阵是表示设计过程中复杂任务关系的信息交换模型, 为了将它有效地应用于各领域的设计过程管理,本文对 DSM的优化算法进行了分类,并阐述了各类算法的基本原理和步骤,对各领域基于 D
2、SM的设计过程模型优化算法的研究提供思路。针对业务流程的特点,在设计结构矩阵的基础上提出了基于实值设计结构矩阵算法,该算法在设计结构矩阵中引入解析结构模型的思想,并将 DSM中的模糊值转变为具有实际意义的具体的值。文中以路径值为例,设计了其详细的算法和规则及实现过程,并将算法应用于仓储物流管理系统问题中。通过工程实例表明了算法的有效性。关键词 : 设计结构矩阵 业务流程重组 系统建模 实值DSM目 录一、绪论11.1 问题的提出及研究意义11.2 选题原因1二、理论基础22.1 设计结构矩阵(DSM)理论概述22.2 业务流程重组(BPR)介绍4三、设计结构矩阵优化算法53.1 基于图论的优化
3、算法53.2 智能优化算法63.1.2 模拟退火算法6四、实值设计结构矩阵的业务流程重构74.1 实值设计结构矩阵74.2 最短路径DSM的实现9五、结束语12六、参考文献13一、绪论1.1 问题的提出及研究意义20世纪60、70年代以来,信息技术革命使企业的经营环境和运作方式发生了很大的变化,而西方国家经济的长期低增长又使得市场竞争日益激烈,企业面临着严峻挑战:(1) 顾客(Customer)买卖双方关系中的主导权转到了顾客一方。竞争使顾客对商品有了更大的选择余地;随着生活水平的不断提高,顾客对各种产品和服务也有了更高的要求。(2)竞争(Competition)技术进步使竞争的方式和手段不断
4、发展,发生了根本性的变化。越来越多的跨国公司越出国界,在逐渐走向一体化的全球市场上展开各种形式的竞争,美国企业面临日本、欧洲企业的竞争威胁。(3)变化(Change)市场需求日趋多变,产品寿命周期的单位已由“年”趋于“月”,技术进步使企业的生产、服务系统经常变化,这种变化已经成为持续不断的事情。因此在大量生产、大量消费的环境下发展起来的企业经营管理模式已无法适应快速变化的市场。面对这些挑战,企业只有在更高水平上进行一场根本性的改革与创新,才能在低速增长时代增强自身的竞争力。哈默教授与钱皮提出应在新的企业运行空间条件下,改造原来的工作流程,以使企业更适应未来的生存发展空间。这一全新的思想震动了管
5、理学界,一时间“企业再造”、“流程再造”成为大家谈论的热门话题。在社会发展日益加快的时代,企业总是不断面临新的挑战,这就需要对企业再造方案不断地进行改进,以适应新形势的需要。而传统的项目管理工具,如PERT图、甘特图,都是为了帮助项目经理在管理大型建筑工程时合理安排任务序列,这些任务的特点是依次进行、各自独立。但在创新的过程中(如产品开发)应用这些工具就很不方便了,因为它们无法清楚地描绘出前后任务之间的信息流。那些传统的工具回答的问题是:“在我开始这项任务之前必须先完成哪些其他任务?”而产品开发规划人员,尤其是高科技企业的规划人员,则需要一种工具来回答这样的问题:“在我完成这项任务之前,我需要
6、从其他任务中得到哪些信息?” 本文运用设计结构矩阵(DSM)的项目管理工具,与传统工具不同的是,这种工具把重点放在了项目的信息流而不是工作流上。1.2 选题原因本人所学专业是统计学,这是一个建立在数据之上的分析类学科,而对于数据的收集、整合、分析都需要一定的数学工具来表达。在一些实际问题的解决中,运用矩阵就可以方便地把实际问题转化为数学表达式,方便我们进一步进行数据分析。我对统计分析在管理经济中的运用很有兴趣,因此选择了业务流程管理这个方向,但由于准备时间比较短,专业知识也不足够,所以阅读了相关文献,加入自己的理解,做了一个文献综述类论文。可能创新点不够,希望读者谅解!二、理论基础2.1 设计
7、结构矩阵(DSM)理论概述2.1.1 设计结构矩阵简介DSM(Design Structure Matrix)一个n阶方阵,用于显示矩阵中的各个元素的交互关系,有利于对复杂项目进行可视化分析。DSM 将任务之间的信息依赖关系映射为布尔矩阵,称为二元 DSM。假设设计过程由个子任务组成,矩阵的行和列分别对应这个子任务,当子任务需要子任务的输出信息时,元素,当两子任务不存在信息依赖关系时,元素。矩阵主对角线以下的非零值标识前馈信息,即需要的信息来自上游子任务;主对角线以上的非零值标识反馈信息,表示设计过程存在迭代,即任务对下游执行的子任务的输出信息有依赖关系。DSM 的下三角形式表示合理的任务执行
8、顺序,对于存在反馈信息的非下三角形式,必须对其优化。DSM 优化是对任务进行重组和排序,使之尽量表现为下三角形式,以减少迭代数和缩小迭代影响的范围,并识别出任务间的三种关系:顺序、并行和耦合,最终实现任务的规划。图2.1显示的DSM矩阵的布置如下:设计结构矩阵是一个具有n行,n列的二元的方阵(矩阵中的元素仅为空格或为记号)。系统的元素均以相同的顺序放在矩阵的最左边和最上边,如果元素和元素之间存在联系,则矩阵中的(行列)元素为(或由数字1表示);否则空格(或由数字0表示)。在由二元(0或1)表示的矩阵中,对角线上的元素一般不用来描述系统,用空格表示。二元矩阵有助于系统的建模,因为它能表示一对系统
9、元素间的关系存在与否,与图形表示相比,它对整个系统元素提供整体的紧凑描绘,并为各项活动的信息需求,活动的顺序决策及活动迭代的控制提供有效的使用方法。如下图,将一个图转化为DSM。 2.1.2 设计结构矩阵分类1、基于参数的DSM该模型被用于分析基于参数交互的系统结构,它通过明确定义待分解的系统元素和交互关系来构建,在对系统间的各种交互类型的分类的基础上,对交互关系再附予适当的权重,使建立的DSM更准确。2、基于团队的DSM在基于信息流的组织分析和设计中,若分析的对象涉及一个项目中的个体或群体,则需采用基于团队的DSM,该方法被用于各种组织实体中。基于团队的DSM通过识别需要的信息流和信息流的方
10、向来构造相应的设计团队。3、基于任务的DSMDSM矩阵包含了组成项目的各项任务及其各任务间信息交换的方式,从中可以发现某项任务开始时需要哪些信息和一个任务产生的信息将提供给哪些任务。在图中,从某一行上可以发现该行的所有输入信息任务,就是处对应的列所表示的任务;从某一列上可以看出该活动的输出信息由哪些任务(即处对应的行所表示的活动)吸收。在对角线下方的表示信息的前馈,而对角线上方表示的是反馈信息,即信息是从由后进行的任务(下游任务)向前进行的任务(上游任务)流动。这意味着前期的任务不得不依据新的信息而重作。虚线框表示的是两对交互任务。4、基于参数的DSM主要用于底层实际决策与设计参数、系统平衡和
11、自设计参数变更的相互联系。动态DSM设计结构矩阵(DSM)静态DSM零部件DSM团队DSM任务DSM参数DSM设计结构矩阵采取自下而上的方式,先收集现存产品的设计参数及其相互关系,再通过设计结构矩阵的变换,对这些设计参数进行聚类分析,从而能够充分反映已有产品开发过程中所遇到的实际情况,从而对以后的产品开发过程有很强的指导作用。2.2 业务流程重组(BPR)介绍2.2.1 业务流程重组的概念BPR(Business Process Reengineering)也译为:业务流程重组、企业流程再造,是90年代由美国麻省理工学院(MIT)的计算机教授迈克尔哈默和CSC管理顾问公司董事长钱皮提出的,他们
12、给BPR下的定义是:“为了飞跃性地改善成本、质量、服务、速度等现代企业的主要运营基础,必须对工作流程进行根本性的重新思考并彻底改革。”它的基本思想就是必须彻底改变传统的工作方式,也就是彻底改变传统的自工业革命以来、按照分工原则把一项完整的工作分成不同部分、由各自相对独立的部门依次进行工作的工作方式。信息系统公司战略问题业务流程信息技术问题组织结构人力资源业务流程企业战略图2.1 业务流程重组概念模型2.1.2 业务流程重组的方法BPR作为一种重新设计工作方式、设计工作流程的思想,是具有普遍意义的,但在具体做法上,必须根据本企业的实际情况来进行。美国的许多大企业都不同程度地进行了BPR,其中一些
13、主要方法有:业务流程重构包含清除非增值活动、简化工作内容、整合相关工作、控制关键环节、企业系统最优化五个环节,简称“依思柯(ESICO)” 重构法,具体内容如下:(1)清除非增值活动。清除所有非增值活动是所有业务流程重构的主要目标。如何在消除或减少这些非增值活动的同时,不给流程运行带来负面的影响,这是流程重构要解决的重要问题。流程重构需要对这些非增值活动进行清除,具体清除内容包括:减少过量生产和过量供应,降低资源浪费。减少等待时间。减少物料、人员等生产资源在运输、转移和移动中的时间。减少不必要的工艺过程;减少库存物资和报批文件。减少生产过程中缺陷、故障与返工,降低人工成本、物料成本以及机会成本
14、。减少重复性任务。统一信息输入输出格式,减少数据重复输出。减少不必要的监督和控制岗位设置,加强自我约束机制。减少不必要的部门协作,强调独立工作。(2)简化工作内容。清除不必要的工作任务是保证所有任务具有价值的前提,但是,有价值的活动未必已是最为简洁、高效的活动。简化工作内容就是通过对有价值活动的简化,达到流程更加简洁、高效之目的。工作内容简化包括以下几个方面:简化各种表格,尽量保持表格数据最少;简化活动过程,把多余的过程删除;简化工艺技术,使操作更简单、明了;简化动作,把多余的动作剔除。(3)整合相关工作。经过简化的任务需要整合使其保持流畅和连贯,以更好地满足顾客需要。相关工作任务整合包括:整
15、合工作。如授权一个人完成一系列简单工作任务,而不是将这些任务交给很多人去做,可以加快物流和信息流的速度;整合团队。尽可能使团队成员在地理位置上保持紧密,这样可以使得物料、信息的传递距离最短。整合顾客。把自己的服务内容和顾客的业务流程整合到一起,为顾客提供增值服务。这样既可以保留顾客,又能够阻挡竞争对手进入;整合供应商。同整合顾客一样,整合供应商可以消除企业和供应商之间烦琐的手续,提高彼此的工作效率。(4)控制关键环节。流程是实现现代企业管理的最优过程,没有控制的流程不是流程而是过程。企业管理需要约束,关键业务处理更需要控制,靠良心或大而化之的制度来管理企业是会出问题的,对流程的关键环节实施控制
16、是保证流程有效的必要手段。企业物料采购流程重构中,有三个环节应作为关键环节受到严格控制,分别是供应商选择、采购价格确定、采购资金支付。人力资源管理的四个重要环节则分别是人员招聘、人员培训、人员晋升和薪酬管理。而质量管理的三个重要环节分别是产品设计、进货检验、生产控制等。三、设计结构矩阵优化算法3.1 基于图论的优化算法图论研究由结点和边构成的图形对象, 任何一个包含了某种二元关系的系统都可用图论的方法分析研究,DSM和有向图的邻接矩阵是同构的,因此,DSM可以基于图论的思想进行优化。基于图论的三种优化方法的基本步骤是相似的, 区别在于定耦操作的不同,共同步骤如下:(1)如果DSM中某行除主对角
17、线外其余元素全部为零,表示该任务的执行不需要任何信息输入,则将它调整到DSM的前面先进行。一旦一个任务被重排,将它从DSM中移出,对剩余任务重复进行1, 直到没有空行子任务,继续下一步;(2)如果某列除主对角线外其他元素全部为零,表示该任务的执行不向其他任务输出任何信息,则该任务可后进行,应调整到DSM的最后。一旦一个任务被重排,将它从DSM中移出,对剩余任务重复(2),直到没有空列子任务,继续下一步;(3)如果经过(1)、(2)之后,DSM中无剩余的子任务,则该矩阵完全分解。否则,继续下一步;(4)采用相应算法实施定耦操作,确定循环迭代子环;(5)对一个循环迭代环进行聚集操作, 即将耦合任务
18、集表示为一个单一任务, 重复(1)、(2)。3.2 智能优化算法随着人工智能的发展, 出现了许多独立于问题的智能优化算法, 如遗传算法、 模拟退火算法等,通过模拟或解释某些自然现象或过程,为解决复杂问题提供了新的思路。3.1.1 遗传算法遗传算法是一种生成、检测迭代过程的搜索算法。DSM 采用GA 优化,参数编码一般采用n进制编码,每个编码位表示任务的执行顺序。算法主要步骤如下: 初始化群体,设置适合的种群规模和使用遗传操作的概率; 根据适应度函数计算群体上每个个体的适应度值,定义适应度函数目标是优化过程的某些指标,如项目持续时间最短或成本最低; 采用和适应度值成比例的概率方法来选择下一代的个
19、体; 按概率Pc进行交叉操作或变异操作; 没有满足某种停止条件,则转第,否则进入; 输出种群中适应度值最优的染色体作为问题的满意解或最优解。算法的停止条件一般有二种: 一是完成了预先给定的进化代数则停止; 另一是种群中的最优个体在连续若干代没有改进或平均适应度在连续若干代基本没有改进时停止。3.1.2 模拟退火算法模拟退火方法是一种模拟金属退火过程的随机搜索方法。主要思想如下:(1)解空间:解空间是DSM中个任务的执行顺序,是的所有循环排列的集合。可行解考虑了两类约束:开始和结束任务的执行顺序不变;有些情况下反馈到前馈的耦合方向是不能改变的。(2)初始解:算法求得的解与初始解状态无关,初始解选
20、。(3)初始温度:是影响SA的全局搜索性能的重要因素之一,太高则搜索到全局最优解的可能性大,但耗费计算时间长;反之,可节约计算时间,但易陷入局部最优解。温度的初始值。(4)温度衰减函数:控制温度的退火速度,采用公式:,式中,为降温的次数。(5)马尔可夫链长度:要求在控制参数的每一取值上都能达到准平衡。为可接受和拒绝的解的最大数。(6)终止条件:满足终止温度或在某一温度下的整个马尔可夫链都没有可接受的最优解。(7)新解的产生:采用两两交换策略,除开始任务和结束任务的执行顺序不变外,随机产生和之间的两相异数和,将任务和的顺序交换。(8)目标函数:为了在输出结果质量和完成时间上求得平衡,定义了耦合度
21、量化迭代因子,项目完成时间为总任务完成时间加上使SA能解决随机问题, 目标函数的值用概率分布表示,用了效用函数实现。四、实值设计结构矩阵的业务流程重构4.1 实值设计结构矩阵4.1.1 邻接矩阵与可达矩阵一个产品开发活动是有许多相互联系并相互制约的技术、生产研究和管理活动组成,这些活动必须按一定的次序来执行,在某些活动完成之前,其后的活动不能开始,从而存在活动间的逻辑关系(先后次序),每项活动间的联系方法可用二进制矩阵来表示。令为二进制矩阵的第行和第列的元素,使得由以上元素构成的矩阵成为邻接矩阵,如下所示:邻接矩阵可以表明各项任务的紧前和紧后关系,如矩阵的第2行和第3列的元素,则表示任务2是任
22、务3的紧前任务。邻接矩阵有下列性质:(1)全零的行所对应的点为汇点(表示的任务为系统的输出要素)。(2)全零的列所对应的点为源点(表示的任务为系统的输入要素)。(3)对应于每行中的“1”的数目就是该任务的紧后任务个数。(4)对应于每列中的“1”的数目就是该任务的紧前任务个数。对邻接矩阵进行一些运算,可得到对应系统的更多信息,若在上述矩阵中加上一个单位矩阵,得上式描述了各任务间经长度为0和1(不大于1)的路的可达情况,同样描述了各任务间经长度不大于2的路的可达情况,依此类推,可得, 矩阵称为可达矩阵,它表明了各任务间经长度不大于的通路的可达情况,对于点数为的图,最长的通路不超过,此外;若可达矩阵
23、的元素全为1,这表明图中任意一点可到达其他各点。当得到可达矩阵后,就可解析并建立起系统的结构模型。按一下步骤建立结构模型:(1)区域分解:即把系统的总元素分解为几个相互无联系或联系极少的区域。在可达矩阵中,将元素在系统中所处位置,划分为可达性集合和前项集合。包括所有可以从元素到达的元素。用数学通式表示为,表示矩阵中行列元素包括所有可达到的元素。用数学通式表达为表示与地元素相同,即假如有属于共同集合的任两元素,若,则属于同一区域。,则分属两个区域。经运算后所得集合为区域分解,即:(为分区数目)。(2)区域内分级:即把同一区域元素分级。设为区域内元素分级集合,为级数,开始,令,按以下步骤反复运算。
24、令。循环运算:只有当时,即把该区域的元素分解完毕。最后结果:。式中:级数;第元素总和。(3)求解结构模型:即建立结构矩阵,它可通过缩减后的可达矩阵通过一系列的计算求得。最后绘制系统的多级递阶有向结构图,并确定中心要素,这样就实现了对原复杂系统的结构模型分析。4.1.2 结构设计矩阵的层次划分一个多级结构的最高级节点,没有再高级的节点可以到达,所以它的可达集中只能包括它本身和它同级的强连接节点,若在最高级中,则找出最高级单元后,将它们去掉,再求剩下的子图的最高级单元。依此类推,可找出各级中所包括的元素,若表示从上到下的各级,则级划分可写成,式中为级数若定义级为空级,则求级划分的得迭代算法为上式为
25、终节点或新终节点的判别标准,同理:源节点的判别准则为式中:和是对由中的节点组成的子图求得的可达集和前导集;正向层次划分中第层中的节点集合;反向层次划分中第层中的节点集合;、空集。4.1.3 实际结构矩阵的解耦与聚类 1、DSM的解耦2、DSM的聚类 对产品结构DSM模型进行聚类运算的目的是:发现DSM元素的聚类实现产品结构的模块化划分,这些聚类应该尽可能地独立于其他聚类,聚类内部包含了大部分的联系,而聚类之间的联系呗消除火灾最小化了。对DSM模型进行聚类的步骤如下:(1)找出与其他任何行列元素都没有联系的元素,把它们置于行列元素排列的前面。(2)找出那些鱼大部分其他行列元素都有联系的元素,称他
26、们为bus聚类。(3)在除上述的(1)和(2)之外的其他行列元素中,从人一个元素出发,查找与之有强联系的元素然后再查找与这些元素有强联系的元素,直到找到全部与该集合有强联系的元素为止,所得到的哟个集合记为一个聚类。然后以剩下的元素中的任一个为起点,重复上述过程,直到这些集合包括了所有这些元素为止。即依据强联系进行了初步的聚类。(4)将弱联系增加到聚类划分中。(5)进行查看和调整,使聚类更符合相关人员的习惯,从而加快流程速度。DSM的聚类举例如下图 4.2 最短路径DSM的实现4.2.1 运算步骤(1)根据流程图建立邻接矩阵,并调整活动次序。在中,某活动所在行的“1”标记表明该活动输出的信息流,
27、某活动所在列的“1”标记现实开展该活动所需输入的信息流。(2)根据网络邻接矩阵式(4.1)及节点间的距离的全职将邻接矩阵修改为网络邻接矩阵。 (4.1)(3)计算最短路径DSM矩阵:最小乘加运算:网络邻接矩阵中,如果,说明有一条由经过至的路径,而其距离值为。为了求得由至经过1个中间节点的最短距离,需要对所有的求出,然后取最小值。矩阵与矩阵进行乘加运算得到矩阵,中元素按如下公式计算,即 (4.2)次最小乘加矩阵:如果上述矩阵与矩阵是相同的矩阵,则成矩阵式2次最小乘加矩阵,记为。同理,次乘加矩阵描述了各节点间经过不多于条通路后的可达程度及最短距离。最短路径DSM:将不断与邻接矩阵进行乘加运算后发现
28、:,即经过条路径检测后,再也找不到距离值更小的路径,这时 (4.3)被称为最短路径DSM,它描述了所有节点间的最短距离值。根据式(4.2)、式(4.3)计算最短路径DSM矩阵。(4)求活动间最短距离及环。中元素现实了从到的最短距离;体现了源点到汇点的最短距离值。4.2.2 方法应用举例(有向图)最短路径DSM运算模型即适用于有向图又适用于无向图,其值可以使时间、运价、建设成本等。例如仓库储物流企业的入库流程如图4.1所示,图中边上的实数代表两部门之间的距离。按上述运算步骤得到该流程的网络邻接矩阵如下:图4.1 简化入库流程描述1申请入库;2查询库存、审核;3拟定库存计划;4计划审批;5修改计划;6入库登记;7到货确认;a业务员;b库存员;c审核员;A业务科;B仓库1234567ABAAAABaaabcba由步骤(3)计算,即;。同理可得:由于,故最短路径DSM矩阵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国微型真空泵行业市场调查研究及投资前景展望报告
- 2025年 湛江市雷州市教育系统招聘教师考试试题附答案
- 2025年中国充气混凝土行业市场发展监测及投资前景展望报告
- 2025年中国固体颗粒物料炒锅行业市场调查研究及发展战略规划报告
- 2025年中国塑钢窗行业市场发展监测及投资战略规划研究报告
- 中国工业氯化铵行业调查报告
- 2025年中国卤味休闲食品市场竞争格局及投资战略规划报告
- 中国橡胶线机头行业市场发展前景及发展趋势与投资战略研究报告(2024-2030)
- 中国涡轮式粉碎机行业市场前景预测及投资战略研究报告
- 中国汽车空气弹簧行业市场全景评估及发展战略规划报告
- 2024版压力容器设计审核机考题库-多选3-2
- 2025年国防教育课件
- 贵州国企招聘2024贵州贵安发展集团有限公司招聘68人笔试参考题库附带答案详解
- 园林行业职业道德
- 副校长笔试题库及答案
- 2025年湖北恩施州检察机关招聘雇员制检察辅助人员40人历年高频重点模拟试卷提升(共500题附带答案详解)
- 陕西省滨河2025届中考生物模拟预测题含解析
- 招标代理招标服务实施方案
- 《煤矿事故分析与预防》课件
- 幼儿园园长,教师轮训工作制度及流程
- 2025下半年江苏南京市浦口区卫健委所属部分事业单位招聘人员24人高频重点提升(共500题)附带答案详解
评论
0/150
提交评论