系统工程与运筹学课设_第1页
系统工程与运筹学课设_第2页
系统工程与运筹学课设_第3页
系统工程与运筹学课设_第4页
系统工程与运筹学课设_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、学 号 1305040111 1305040112 1305040113 130504015 1305040120X徐 卷夭诊系统工程与运筹学课程设计设计说明书饲料配比问题建模与求解生产调运问题建模与求解智能手机选购系统综合评价起止日期: 2015年11月28日至 2015年12月4日学生姓名韩瑞彪王传岳谢振振张洪升蔡小兰班级2013级工商管理1班成绩指导教师经济与管理学院2015年12月4日目录I研究报告3.课程设计题目(一):饲料配比问题 3摘要 3.1. 问题的提出 3.2. 问题分析 3.3. 基本假设与符号说明 4.4. 模型的建立及求解结果 4.5. 结果分析 5.6. 模型评价

2、5.课程设计题目(二):生产调运问题建模与求解 6.摘要 6.1. 问题的提出 6.2. 问题分析 7.3. 基本假设与符号说明 7.4. 模型的建立及求解结果 8.5. 结果分析 9.6. 模型评价 1.0.课程设计题目(三):智能手机选购系统综合评价 11摘要 111. 问题的提出 112. 问题分析 1.2.3. 系统评价 1.2.4. 系统决策 1.6.参考文献 1.6.U工作报告171. 本组成员分工情况 1.72. 心得与体会 1.7.附件一:饲料配比问题lingo程序及结果 1.7附件二:生产调运问题lingo程序及结果 2.0I研究报告课程设计题目(一):饲料配比问题摘要此设计

3、报告是用来解决如何使营养成分在规定的标准下用最少的成本合理配比饲料的决策问题,主要应用了线性规划的有关知识。线性规划是运筹学中研究较早、发展较快、方法较成熟的一个重要分支,它帮助人们解决了很多的日常的数学问题。 我们需要通过对题目 的了解,建立最佳的配比方案同时建立一般线性规划模型。之后再结合模型的特点,将其转化为一个线形规划的数学模型,再运用我们所学过的运筹学的知识和理论以及运筹学计算软 件Lingo求解模型最优解。最后再根据结论给出建议和对策。1. 问题的提出在此问题的特点是显而易见的:可供选择的饲料种类是有限的,并且各种饲料每单位所含养分不同,配比出来的饲料成本不同,同时又要求所含养分在

4、一定范围内, 使配比饲料成本最低。课程设计选题(2):饲料配比问题为了发展家禽饲养业,某养猪场所用饲料由6种饲料混合而成,各种饲料每单位所含营 养成分如表2所示。表2各种饲料每单位所含养分及价格走分 饲料、所含养分价格元/单位蛋白质纤维脂肪铁钙苜蓿0.190.170.0230.0160.00070.24玉米0.0820.0220.0360.00060.00220.19大麦0.110.0760.0170.00570.00120.25鱼粉0.0480.090.0720.0480.0270.41燕麦0.1150.1190.0380.00090.00110.21黄豆0.480.0280.0050.00

5、190.00190.35现在要求所配饲料每单位的营养标准为: 蛋白质含量不少于21%但不得大于40%纤维不 少于5%旦不得大于25%脂肪不少于3.4%但不得大于10%铁不少于1%但不得大于1.05%, 钙不少于0.45%但不得大于0.6%,怎样配比饲料成本最低?2. 问题分析线性规划所解决的问题主要分为两类:这次报告主要研究在资源(人力、物力、财力) 一定的情况下,如何利用这些有限的资源来完成最多的任务。这属于线性规划所解决的问题 的范畴,再通过对该问题的特点和采用的方法的特点的比较,可以确定此方法适用该问题, 能够得到问题的最优方案。所以该理论方法具有适用性和有效性。3. 基本假设与符号说明

6、3.1 基本假设从题目的要求和实际情况来看,假设 6 种饲料每单位所含量分别为 x1 x6 称为决策变量。3.2 符号说明a 是配比饲料中各种饲料的含量数b 是配比饲料中每单位的价格c 是配比饲料中每单位所含养分的最低值d 是配比饲料中每单位所含养分的最高值p 是配比饲料每单位营养成分的百分比含量。4. 模型的建立及求解结果4.1 模型的建立在此问题中,饲料配比的“最优化”要有一定的标准或评判方法,目标函数就是这个标 准的数字描述。在此问题中的目标是要求该养猪场配比饲料成本 Z 最低。根据该问题的具体 条件可得目标函数:min Z=0.24x1+0.19x2+0.25x3+0.41x4+0.2

7、1x5+0.35x6 限制条件的确定在目标实现的基础上,必须满足产品各种资源的消耗量。满足蛋白质的营养标准0.21 0.19x1+0.082x2+0.11x3+0.048x4+0.115x5+0.48x6 0.4满足纤维的营养标准0.05 w 0.17x1+0.022x2+0.076x3+0.09x4+0.119x5+0.028X6 0, x2 0, x3 0, x4 0, x5 0,x6 0根据以上情况建立模型如下:Min Z=0.24x1+0.19x2+0.25x3+0.41x4+0.21x5+0.35x6s.t. 0.21 w 0.19x1+0.082x2+0.11x3+0.048x4+

8、0.115x5+0.48x6 w 0.40.05 w 0.17x1+0.022x2+0.076x3+0.09x4+0.119x5+0.028X6 w0.250.034 w 0.023x1+0.036x2+0.017x3+0.072x4+0.038x5+0.005X6 wO.10.01w 0.016x1+0.0006x2+0.0057x3+0.048X4+0.0009x5+0.0019x6 w 0.0150.0045w0.0007x1+0.0022x2+0.00l2x3+0.027x4+0.0011x5+0.0019x6 w0.006x1 , x2, x3, x4, x5, x6 04.2 模型

9、求解的结果model : !饲料配比模型; sets :material/1.6/:a,b;nutrition/1.5/:c,d; link(material,nutrition):p; endsets!6种材料;!每单位所含养分的最低值,最高值;!每单位营养成分百分比;data0.24 b=0.24 0.19 0.25 0.41 0.21 0.35; c=0.21 0.05 0.034 0.01 0.0045;!最低养分限制;!最高养分限制;d=0.4 0.25 0.1 0.0105 0.006; enddata min =sum(material:a*b); !最小费用; for (nut

10、rition(j): sum(material(i):a(i)*p(i,j)=c(j);for (nutrition(j): sum(material(i):a(i)*p(i,j)=d(j); sum(material:a)=1;End当模型输入完成后进行以下操作:(1)利用 File 菜单下的 save 选项进行问题存储;(2)利用 File 菜单下的 open 选项打开已存储的问题;(3)利用 Lingo 菜单下的 solve 选项进行问题求解;(4)在求解过程中会弹出一个对话框,点击ok,计算结果如下Global optimal solution found.Objective valu

11、e:0.2860273Infeasibilities:0.000000Total solver iterations:75. 结果分析 在保证满足营养标准的前提下,混合食料中最优值,苜蓿、玉米、大麦、鱼粉、燕麦、 黄豆比例为 3.72%, 0,0,17.52% , 50.27%, 28.47%。最低配比饲料成本最优解为 0.286 元每公 斤。6. 模型评价 根据以上的结果分析可知该系统的研究达到了预期的研究目的,能够较好的解决此饲 料配比问题。但此模型是建立在基本建设的前提下得到的最优解,在实际操作中,由于饲 料的特殊属性,结果可能会发生变化。因此,此模型有待于更好的提高。课程设计题目(二)

12、:生产调运问题建模与求解摘要本研究报告中,主要就生产调运问题进行研究,要求以总成本最小为目标进行研究。在对该问题进行研究分析后,建立了相关模型,并运用Lin go语句进行求解,得出了问题的具体解决方案,然后对此方案和模型进行了评价。1. 问题的提出生产计划部门以生产成本为主来分配资源 (如生产任务分配模型)使企业生产成本最低, 销售部门以运输费为主编制调运方案 (如运输模型)是调运成本最低,二者均实现各自的最 优化。需编制各车间的产品生产计划、由构件车间向各项目和由仓库向各项目、 各车间的物 资调运计划,以及产品调运计划,使产品运输费用最省且总成本为最小。课程设计选题(10):生产调运问题某建

13、筑公司有5个施工项目准备开工,该公司有两个金属构件生产车间,有两个仓库, 内存3种规格钢材,1种规格塑钢门窗(成套使用)。仓库的钢材品种及拥有量见表12,构件车间生产的单位构件材料消耗、工时消耗、生产能力和生产成本见表13-16,各项目构件和钢材需求量见表17,由构件车间向各项目和由仓库向各项目运送物资的单位运费见表 18。试建立并求解模型,编制各车间的产品生产计划、由构件车间向各项目和由仓库向各项 目、各车间的物资调运计划,使总成本为最小。表11仓库的钢材品种、塑钢拥有量甲仓库乙仓库A型钢材(吨)60004800B型钢材(吨)50006200C型钢材(吨)65007200塑钢门窗(套)400

14、320表12单位构件材料消耗量单位:吨/件A型钢材B型钢材C型钢材钢梁81321钢架101518表13车间构件生产工时消耗表钢梁(小时/件)钢架(小时/件)工时拥有量(小时)一车间304010000二车间403520000表14车间生产能力表单位:件钢梁钢架一车间260120车间200240表15车间生产成本表单位:元/件钢梁钢架一车间320300二车间280360表16各项目钢梁、钢架、钢材、塑钢门窗需求量表钢梁(件)钢架(件)A型钢材(吨)B型钢材(吨)C型钢材(吨)塑钢门窗(套)项目15040702070120项目2305050106580项目39080308085180项目470100

15、709060180项目56020806040100合计300290300260320660表17单位物资运价表单位:元/吨公里 元/套 公里 元/件公里一车间二车间项目1项目2项目3项目4项目5一车间-60701409080二车间-40601207060甲仓库90603020304030乙仓库705020252515402. 问题分析有甲乙两个仓库,都库存了 A、B、C三种钢材和一种塑钢门窗,一二车间生产施工项目 需要的钢梁和钢架需要用到甲乙库存的钢材和塑钢门窗,共有五个施工项目除了需要车间生产的钢梁和钢架外,同样需要仓库库存的钢材和塑钢门窗,车间向各项目和仓库向各项目、 各车间的的物资调运需

16、要四条路径的运输费用,车间生产产生制造成本,还受到生产工时, 生产能力的限制,现在需要构建模型,设置变量和各种参量,建立目标函数和确定约束条件, 求助Lingo语句解决问题,使总成本最小。3. 基本假设与符号说明3.1基本假设假设仓库能及时供应各种材料,钢材、门窗库存无损耗;车间机器无故障,生产能力稳 定,产品100%合格,运输过程无损耗,单位成本不变;项目需求不变。3.2符号说明i表示仓库的个数,j表示项目的个数,m表示车间的个数,f表示产品的个数,k表示钢材 的个数,sgmc(i)表示第i个仓库塑钢门窗的库存量, sgxql(j)表示第j个项目的塑钢门窗的需求量,z( m表示第m个车间工时

17、拥有量,chanpinql(j,f) 表示第 j 个项目对第 f 种产品的需求量, ckfy ( i,j )表示第 i 个仓库运往第 j 个项目的单位费用, ckfyl (i,m )表示第i个仓库运往第m个车间的单位费用, cjfy (m,j)表示第m个车间运往第j个项目的单位费用, x( m,j,f )表示第m个车间运到第j个项目的第f个产品的数量, gcl (m,k)表示第m个车间得到的第k种钢材的量, chyl ( m,f)表示第m个车间里第f种产品的生产量即拥有量, sj(m,f)和cb(m,f)表示第m个车间的第f种产品的单位产品的生产时间和成本, c1(i,j )和 y(i,j)

18、表示第 i 个仓库运到第 j 个项目的塑钢门窗的单位运费和数量, bl (f,k )表示第 f 种产品中第 k 种钢种的组成比例, kcl (i,k )表示第 i 个仓库第 k 种钢材的总库存量 ,kcll ( i,k)表示第i个仓库运往所有项目的第k种钢材的库存量, kcl2 ( i,k )表示第 i 个仓库运往所有车间的第 k 种钢材的库存量, cyjkl (i,j,k )表示第 i 个仓库运到第 j 个项目的第 k 种钢材数量, xmxql(jk )表示第 j 个项目对第 k 种钢材的需求量, cmgc (i,m,k )表示第i个仓库运向第m个车间的第k种钢材的钢材量, chanpinn

19、l (m,f)表示第m个车间对第f种产品的生产能力。4. 模型的建立及求解结果4.1 模型的建立 约束条件:1. 各车间运到各项目的产品的数量等于该车间的拥有量:5x(m,j,f)=chyl(m,f) (j=1,2,3,4,5)j12. 车间运到各项目的产品的数量要满足各项目的需求量:2 x(m,j,f)=cha npi nxql(j,f) (m=1,2)m13. 仓库运到各项目的各种钢材的数量要满足它的需求量:2cyjkl(i,j,k)=xmxql(j,k) (i=1,2)4. 仓库运到各车间的各种钢材的量满足车间对各种钢材的需求量: 刀 cmgc(i,m,k)=gcl(m,k)5. 车间产

20、品量乘以各种钢的比例等于仓库运到车间的各种钢的量:刀 chyl(m,f)*bl(f,k)=gcl(m,k)6. 各车间生产产品所用的时间不超过该车间的工时拥有量:刀chyl(m,f)*sj(m,f) =c(j);!最低养分限制;for (nutrition(j):sum(material(i):a(i)*p(i,j)=d(j);!最高养分限制;sum(material:a)=1;end当模型输入完成后进行以下操作:( 5) 利用 File 菜单下的 save 选项进行问题存储;( 6) 利用 File 菜单下的 open 选项打开已存储的问题;( 7) 利用 Lingo 菜单下的 solve

21、选项进行问题求解;(8)在求解过程中会弹出一个对话框,点击ok,计算结果如下Global optimal solution found.0.28602730.0000007Objective value:Infeasibilities:Total solver iterations:Variable Value Reduced CostA( 1)0.3729713E-010.000000A( 2)0.0000000.1360455E-01A( 3)0.0000000.1186662A( 4)0.17520260.000000A( 5)0.50272960.000000A( 6)0.284770

22、70.000000B( 1)0.24000000.000000B( 2)0.19000000.000000B( 3)0.25000000.000000B( 4)0.41000000.000000B( 5)0.21000000.000000B( 6)0.35000000.000000C( 1)0.21000000.000000C( 2)0.5000000E-010.000000C( 3)0.3400000E-010.000000C( 4)0.1000000E-010.000000C( 5)0.4500000E-020.000000D( 1)0.40000000.000000D( 2)0.2500

23、0000.000000D( 3)0.10000000.000000D( 4)0.1050000E-010.000000D( 5)0.6000000E-020.000000P( 1, 1)0.19000000.000000P( 1, 2)0.17000000.000000P( 1, 3)0.2300000E-010.000000P( 1, 4)0.1600000E-010.000000P( 1, 5)0.7000000E-030.000000P( 2, 1)0.8200000E-010.000000P( 2, 2)0.2200000E-010.000000P( 2, 3)0.3600000E-0

24、10.000000P( 2, 4)0.6000000E-030.000000P( 2, 5)0.2200000E-020.000000P( 3, 1)0.11000000.000000P( 3, 2)0.7600000E-010.000000P( 3, 3)0.1700000E-010.000000P( 3, 4)0.5700000E-020.000000P( 3, 5)0.1200000E-020.000000P( 4, 1)0.4800000E-010.000000P( 4, 2)0.9000000E-010.000000P( 4, 3)0.7200000E-010.000000P( 4,

25、 4)0.4800000E-010.000000P( 4, 5)0.2700000E-010.000000P( 5, 1)0.11500000.000000P( 5, 2)0.11900000.000000P( 5, 3)0.3800000E-010.000000P( 5, 4)0.9000000E-030.000000P( 5, 5)0.1100000E-020.000000P( 6, 1)0.48000000.000000P( 6, 2)0.2800000E-010.000000P( 6, 3)0.5000000E-020.000000P( 6, 4)0.1900000E-020.0000

26、00P( 6, 5)0.1900000E-020.000000RowSlack or SurplusDual Price10.2860273-1.00000020.000000 -0.748219930.3990715E-010.00000040.000000-4.10448550.000000-2.34773460.1350645E-020.00000070.19000000.0000003180.16009290.00000090.6600000E-010.000000100.5000000E-030.000000110.1493548E-030.000000120.0000000.341

27、2866E-01lingo程序及结果附件二:生产调运问题Global optimal solution found.Objective value:1952550.Extended solver steps: 0Total solver iterations: 11VariableValue Reduced CostSGMC( 1)400.00000.000000SGMC( 2)320.00000.000000SGXQL( 1)120.00000.000000SGXQL( 2)80.000000.000000SGXQL( 3)180.00000.000000SGXQL( 4)180.00000

28、.000000SGXQL( 5)100.00000.000000Z( 1)14000.00 0.000000Z( 2)10000.00 0.000000CHANPINXQL( 1, 1) 50.000000.000000CHANPINXQL( 1, 2) 40.000000.000000CHANPINXQL( 2, 1)30.000000.000000CHANPINXQL( 2, 2)50.000000.000000CHANPINXQL( 3, 1)90.000000.000000CHANPINXQL( 3, 2) 80.000000.000000CHANPINXQL( 4, 1) 70.00

29、0000.000000CHANPINXQL( 4, 2)100.00000.000000CHANPINXQL( 5, 1)60.000000.000000CHANPINXQL( 5, 2)20.000000.000000CKFY( 1, 1)30.000000.000000CKFY( 1, 2)20.000000.000000CKFY( 1, 3)30.000000.000000CKFY( 1, 4)40.000000.000000CKFY( 1, 5)30.000000.000000CKFY( 2, 1)20.000000.000000CKFY( 2, 2)25.000000.000000C

30、KFY( 2, 3)25.000000.000000CKFY( 2, 4)15.000000.000000CKFY( 2, 5)40.000000.000000CKFY1( 1, 1)90.000000.000000CKFY1( 1, 2)60.000000.000000CKFY1( 2, 1)70.000000.000000CKFY1( 2, 2)50.000000.000000CJFY( 1, 1)60.000000.000000CJFY( 1, 2)70.000000.000000CJFY( 1, 3)140.00000.000000CJFY( 1, 4)90.000000.000000CJFY( 1, 5)80.000000.000000CJFY( 2, 1)40.000000.000000CJFY( 2, 2)60.000000.000000CJFY( 2, 3)12

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论