




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、课程名称: 数值代数课程设计指导教师: 刘兰冬班级: 姓名: 学号:实验项目名称:二阶常微分方程边值问题实验目的及要求:二阶常微分方程边值问题d u22 2 u 0 , 1 x 1dx2 ( x 2) 21u( 1) 1, u(1) 3u( x) 1(该问题真解为: u(x) x 2 )步长 h 自己选定,利用差分法求出近似解,利 用 MATLAB函数画出比较图形。实验原理:一、微分方程:微分方程是现代数学中一个很重要的分支,从早期的微积分时代起,这个 学科就成为了理论研究和实践应用的一个重要领域。在微分方程理论中,定解 条件通常有两种提法:一种是给出了积分曲线在初始时刻的性态,相应的定解 条
2、件称为初值问题;另一种是给出了积分曲线首末两端的性态,这类条件则称 为边界条件,相应的定解问题称为边值问题。常微分方程边值问题在应用科学与工程技术中有着非常重要的应用,例如 工程学、力学、天文学、经济学以及生物学等领域中的许多实际问题通常会归结为常微分方程边值问题的求解。虽然求解常微分方程边值问题有很多解析方 法可以求解,但这些方法只能用来求解一些特殊类型的方程,对从实际问题中 提炼出来的微分方程往往不再适用,因而对常微分方程边值问题的数值方法的 研究显得尤为重要。经典的数值方法主要有:试射法(打靶法)和有限差分法。许多物理现象随着时间而发生变化、如热传导过程、气体扩散过程和波的 传播过程都与
3、时间有关。描述这些过程的偏微分方程具有这样的性质;若初始 时刻 t=t0 的解已给定,则 tt0 时刻的解完全取决于初始条件和某些边界条件。 利用差分法解这类问题, 就是从初始值出发, 通过差分格式沿时间增加的方向, 逐步求出微分方程的近似解。微分方程的定解问题就是在满足某些定解条件下求微分方程的解。在空间 区域的边界上要满足的定解条件称为边值条件。如果问题与时间有关,在初始 时刻所要满足的定解条件,称为初值条件。不含时间而只带边值条件的定解问 题,称为边值问题。与时间有关而只带初值条件的定解问题,称为初值问题。 同时带有两种定解条件的问题,称为初值边值混合问题。定解问题往往不具有解析解,或者
4、其解析解不易计算。所以要采用可行的 数值解法。有限差分方法就是一种数值解法,它的基本思想是先把问题的定义 域进行网格剖分,然后在网格点上,按适当的数值微分公式把定解问题中的微 商换成差商,从而把原问题离散化为差分格式,进而求出数值解。此外,还要 研究差分格式的解的存在性和唯一性、解的求法、解法的数值稳定性、差分格 式的解与原定解问题的真解的误差估计、差分格式的解当网格大小趋于零时是 否趋于真解(即收敛性),等等。有限差分方法具有简单、 灵活以及通用性强等特点, 容易在计算机上实现 二、二阶常微分方程二阶常微分方程一般可表示成如下的形式:y (x) f (x,y, y), a x b边值条件有如
5、下三类 9 :第一类边值条件y(a),y(b)第二类边值条件y(a),y (b)第三类边值条件 190y(a)1y(a) ,0y(b)1y (b)其中 0 1 0 , 0 1 0 ,010 , 0 1 0 。在对边值问题用数值方法求解之前,应该从理论上分析该边值问题的解是 否存在,若问题的解不存在,用数值方法计算出来的数据没有任何意义。下面 的定理给出了边值问题存在唯一解的充分条件。定理:设方程中的函数ff及 y , y 在区域( x,y,y )|a xb,y,y 内连续,并且f(x,y,y ) 0, ( ) y(x,y,y ) ;f (x,y,y )( )y 在内有界,即存在常数 M ,使得
6、f (x,y,y)y(x,y,y ) ,则边值问题 - 的解存在且唯 我们假设函数 f (x, y, y )可以简单地表示成f (x, y, y ) p(x)y q(x)y r(x),即边值问题 - 为具有如下形式的二阶线性边值问题axby p(x)y q(x)y r(x), y(a) , y(b)三、有限差分法:有限差分方法是用于微分方程定解问题求解的最广泛的数值方法,其基本思想是用离散的、只含有有限个未知量的差分方程去近似代替连续变量的微分 方程和定解条件,并把相应的差分方程的解作为微分方程定解问题的近似解。有限差分逼近的相关概念设函数 f(x) 光滑,且 0 h 1 ,利用 Taylor
7、展开,可得y(x h) y(x)h2 hy (x) 2 y (x)h3h3 y (x)y(x h) y(x)h2hy(x) h2 y (x)h33 y (x)由可以得到一阶导数的表达式y (x)y(x h) y(x)hh2 y (x)h2h3 y (x)(2.21a)或者y (x)y(x h) y(x)O(h)同理由式可得y (x)y(x) y(x h)hh2 y (x)h2h3 y (x)(2.22a)或者y (x)y(x) y(x h)O(h)其中 O(h) 表示截断误差项 . 因此,可得一阶导数的y (x) 的差分近似表达式为y (x) y(x h) y(x)y (x) y(x) y(x
8、 h)由和可知,差商和逼近微商y (x)的精度为一阶,即为 O(h) ,为了得到更精确的差分表达式,将减可得2h3y(x h) y(x h) 2hy (x) 23h y (x)从而可以的到y (x)y(x h) y(x h)2hh62y()(2.26a)或者y (x) y(x h) y(x h) O(h2) 2h其中, x h x h.可得一阶导数 y ( x)的差分近似表达式为y (x)y(x h) y(x h)2h2由此可知,差商逼近微商 y ( x)的精度为二阶,即为 O(h2)类似地,我们还可以给出二阶微商 y (x) 和高阶微商的差分近似表达式。例 如将和两式相加可得进而有2y (x
9、) y(x h) 2y(x) y(x h) h y(4)( ) y (x) 2 y ( ) h212其中 x h x h.因此,二阶导数 y ( x)的差分近似表达式 8 为 y (x) y(x h) 2y(2x) y(x h) O(h2)h2实验内容(方法和步骤):差分法代码如下 clc;clear all h=;%x属于【 a,b 】 a=-1;b=1;x=a:h:b; n=length(x);%定义 y syms y;y=(x+2).*(x+2).(-1);hold on grid on yx=zeros(1,n);yxx=zeros(1,n); for i=2:n-1yx(i-1)=(
10、y(i+1)-y(i-1)/(2*h); yxx(i-1)=(y(i+1)+y(i-1)-2*y(i)/h2;end plot(x,y,r,linewidth,2) plot(x(2:n-1),yx(1:n-2),g,linewidth,2); plot(x(2:n-1),yxx(1:n-2),b,linewidth,2);legend( 原函数 , 差分一阶导数 , 差分二阶导数 )xlabel($x$,Interpreter,latex,color,r,fontsize,28);ylabel($y$,Interpreter,latex,color,r,fontsize,28);实验结果与分析:差分法结果如下:从图上我们可以看到,可以得到函数图像确实十分接近理论上的解答,差 分二阶导数比起差分一阶导数来说,更加接近原函数。差分二阶导数在后面几 乎能跟原函数重合,是非常好的求边值问题的方法。我们在整个实验中,感觉最困难的就是对于差分法的理解以及程序的编写 上面。我们查询了各种有关于常微分方程边值问题、有限差分法、二阶常微分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机电工程发展的学术研究与试题及答案
- 西方国家政治家的人格特征研究试题及答案
- 机电工程考试成功经验2025年试题及答案
- 软件开发生命周期管理及试题与答案
- 网络工程师考试准备技巧与试题及答案
- 西方政治制度与教育科技融合的研究试题及答案
- 机电工程知识传承与试题及答案总结
- 网络工程师个案研究试题及答案
- 常见网络协议解析试题及答案
- 网络工程师职业发展的外部环境分析试题及答案
- 2023年四川省水电投资经营集团普格电力有限公司招聘笔试题库含答案解析
- (完整版)高级法学英语课文翻译
- 无人机项目融资商业计划书
- 食品营养学(暨南大学)智慧树知到答案章节测试2023年
- GA 1810-2022城镇燃气系统反恐怖防范要求
- GB/T 2518-2008连续热镀锌钢板及钢带
- 商户撤场退铺验收单
- 部编版小学道德与法治三年级下册期末质量检测试卷【含答案】5套
- 断亲协议书范本
- 五年级语文下册第八单元【教材解读】课件
- 外科围手术期患者心理问题原因分析及护理干预
评论
0/150
提交评论