


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、学必求其心得,业必贵于专精31。1两角差的余弦公式提出问题问题1:当60,30时,cos cos 等于多少?提示:cos cos cos 60cos 30.问题2:cos 60cos 30cos(6030)成立吗?提示:不成立问题3:cos cos cos()成立吗?提示:不一定问题4:单位圆中(如图),aox,box,那么a,b的坐标是什么?与的夹角是多少?提示:a(cos ,sin ),b(cos ,sin )与的夹角是。问题5:你能用几种方法计算的数量积?提示:|cos()cos()(cos ,sin )(cos ,sin )cos cos sin sin .问题6:根据上面的计算可以得
2、出什么结论?提示:cos()cos cos sin sin .导入新知两角差的余弦公式公式cos()cos_cos_sin_sin_简记符号c()使用条件,为任意角化解疑难1公式c()的结构特点及适用条件(1)公式的结构特点公式的左边是差角的余弦,右边的式子是含有同名函数之积的和式,可用口诀“余余正正号相反”记忆公式(2)公式的适用条件公式中的,不仅可以是任意具体的角,也可以是一个“团体”,如cos中的相当于公式中的角,相当于公式中的角。可用两角差的余弦公式展开,因此对公式的理解要注意结构形式,而不要局限于具体的角2公式的巧记两角差的余弦值等于两角的同名三角函数值乘积的和给角求值问题例1求下列
3、各式的值(1)cos 75cos 15sin 75sin 195;(2)sin 46cos 14sin 44cos 76;(3)cos 15sin 15.解(1)cos 75cos 15sin 75sin 195cos 75cos 15sin 75sin(18015)cos 75cos 15sin 75sin 15cos(7515)cos 60。(2)sin 46cos 14sin 44cos 76sin(9044)cos 14sin 44cos(9014)cos 44cos 14sin 44sin 14cos(4414)cos 30.(3)cos 60,sin 60,cos 15sin 15
4、cos 60cos 15sin 60sin 15cos(6015)cos 45。类题通法利用公式c()求值的方法技巧在利用两角差的余弦公式解含有非特殊角的三角函数式的求值问题时,要先把非特殊角转化为特殊角的差(或同一个非特殊角与特殊角的差),正用公式直接化简求值,在转化过程中,充分利用诱导公式,构造出两角差的余弦公式的结构形式,正确地顺用公式或逆用公式求值活学活用1cos(x27)cos(x18)sin(x27)sin(x18)_.答案:2求的值答案:给值(式)求值问题例2(1)若sin sin ,cos cos ,则cos()的值为()a.b.c.d1(2),为锐角,cos(),cos(2)
5、,求cos 的值解(1)a(2),为锐角,0.又cos()0,0,02.又cos(2),02,sin(),sin(2),cos cos(2)()cos(2)cos()sin(2)sin().类题通法给值求值的解题策略(1)已知某些角的三角函数值,求另外一些角的三角函数值,要注意观察已知角与所求表达式中角的关系,即拆角与凑角(2)由于和、差角与单角是相对的,因此解题过程中根据需要灵活地进行拆角或凑角的变换常见角的变换有:();;2()();2()()活学活用若sin,cos,且0,求sin()的值答案:给值求角问题例3(1)已知,均为锐角,且sin ,sin ,则_.(2)已知cos(),cos
6、(),且,,求角的值解(1)(2)由,cos(),可知sin().又,cos(),sin(),cos 2cos()()cos()cos()sin()sin()1.,2,2,故。类题通法已知三角函数值求角的解题步骤(1)界定角的范围,根据条件确定所求角的范围;(2)求所求角的某种三角函数值,为防止增解最好选取在上述范围内单调的三角函数;(3)结合三角函数值及角的范围求角活学活用已知,都是锐角,cos ,sin(),求角的值答案:典例已知,为锐角,cos ,sin(),则cos _.解析因为为锐角,cos ,所以sin .因为,为锐角,所以0.又sin(),所以0或。由cos ,得,从而,于是co
7、s(),所以cos cos()cos()cos sin()sin 。答案易错防范本题若不能利用sin()将的范围进一步缩小为0或,误认为(0,),则会得出cos(),进而得出cos 或的错误答案成功破障已知,sin(),sin,求cos的值答案:随堂即时演练1cos()cos sin()sin 化简为()asin(2)bcos(2)ccos dcos 答案:c2设,若sin ,则cos()a. b.c d答案:b3计算:cos(42)cos 18sin 42 sin(18)_.答案:4已知sin,则cos 的值为_答案:5若x,且sin x,求2cos2cos x的值答案:课时达标检测一、选择
8、题1cos 165的值是()a。b.c. d。答案:d2满足cos cos sin sin 的一组,的值是()a, b,c, d,答案:b3已知cos,0,则cos 等于()a. b。c. d。答案:a4已知cosm,则cos xcos()a2m b2mc。m dm答案:c5已知abc的三个内角分别为a,b,c,若a(cos a,sin a),b(cos b,sin b),且ab1,则abc一定是()a直角三角形 b等腰三角形c等边三角形 d等腰直角三角形答案:b二、填空题6计算:(cos 75sin 75)_。答案:7已知sin sin sin 0和cos cos cos 0,则cos()的值是_答案:8已知cos(),cos(),2,则cos 2_。答案:1三、解答题9已知向量a(cos ,sin ),b(cos ,sin ),|ab,求cos()的值解:a(cos ,sin ),b(cos ,sin ),ab(cos cos ,sin sin )ab ,22cos(),cos()。10已知sin ,cos ,、均为第二象限角,求cos()的值解:由sin ,为第二象限角,cos 。又由cos ,为第二象限角,sin .cos()cos cos sin sin 。11已知cos,sin,且,求co
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于“计数单位”的小学数学整体性教学研究-以苏教版教材为例
- 解析卷-人教版八年级物理上册第5章透镜及其应用定向测试试题(含答案解析)
- 19.《社交媒体内容策划与用户数据分析技能考核试卷》
- 2024年环境监测实验室人员授权管理考核试卷
- 补交社保合同(标准版)
- 板房拆除合同(标准版)
- 惠阳购房合同(标准版)
- 跨越时代的艺术之旅
- 渭南高新区白杨卫生院招聘考试真题2024
- 2025年2月湖北省公路水运工程施工单位安管人员考试建筑施工企业复习题及答案
- 《最后一片叶子》课件 2024年高教版(2023)中职语文基础模块上册
- 预防校园欺凌二年级主题班会
- 英语四级700核心词汇【含音标】
- 近场光学显微技术原理及应用
- 中车贵阳车辆有限公司木颗粒增强复合地板制造项目环境影响报告
- 机械类外文文献翻译(中英文翻译)
- 液压支架修理的工艺流程图
- 支局一点一策
- 麻风病防治知识课件
- 工程项目管理(第五版)丛培经 第一章
- 中药制剂检验的程序
评论
0/150
提交评论