




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Quantitative Risk Management - Copulas and Dependence Ming-Heng Zhang RiskLab.CN Ri$kLab.CNTM Slide2 Out-Line nProperties of 2-Copulas nThe most important copulas nExtreme and singular copulas nDependency Bounds nApplication to VaR aggregation nApplication to two assets option pricing Ri$kLab.CNTM S
2、lide3 Chapter 1 Introduction nMotivations Multivariate Analysis Joint Distribution vs Marginal Distribution Joint and Marginal Distribution vs Risk Modelling For examples ?),( temultivaria offunction on distributi-joint theconstruct determine/ toHow ,cov and )( 2 1 exp 2 1 )(),(gievnFor 1 22 n ji ji
3、 ij i i i iii xxf DD x xfN i Ri$kLab.CNTM Slide4 Motivations nConsider a portfolio of financial risks X1,.,Xn a portfolio of traded financial assets e.g. equities; a credit portfolio of loans to various counter-parties; a portfolio of potential insurance losses in various lines of business or geogra
4、phical areas. nSampling i.i.d. nSuppose that the distribution of pay-off n-dimensional f(X1, . ,Xn) representing the risk of the portfolio or some contract written on the portfolio. nIts VERY difficulty to estimate joint distribution f()! nHow incorporate the marginal distribution of Xi to describe
5、the dependence structure of multivariate X1,.,Xn? Ri$kLab.CNTM Slide5 Bivariate Normal PDF nthe 2-dimension normal probability function )( )( 2)( )1 (2 1 exp 12 1 ),( )(cov( ),(),(gievnFor 22 2 22 y y yx yx x x yx yx yyxx yyyxxx xxx x yxf DD NN Ri$kLab.CNTM Slide6 Nearly Half-century of Copulas n195
6、9, M.Frchet and A.Sklar introduced the concepts of copulas Frchet,M.,1951, Sur Les tableaux de corrlation dont les marges sont donnes,Ann.Univ. Lyon 9,Sec.A,53-57 Frchet,M.,1957,Les tableaux de corrlation et les programmes lineaires, Revue Inst. Int. Statist. 25,23-40 Sklar,A.,1959, Fontions de repa
7、rtition a n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris 8, 229-231 Sklar,A.,1973, Random variables,joint distribution functions and copulas, Kybernetika 9, 449-460 Ri$kLab.CNTM Slide7 Gap between Risk Model and the World nTraditional Gaussian Hypothesis on the distribution of logari
8、thm returns or the complete market nTypical Model Markowitz Mean-variace portfolio, optimized, the variance corresponds to the risk measure but it implies the world is Gaussian nTwo difficulties Gaussian Assumption Joint Distribution Modelling nOne of the main issues of risk management is the aggreg
9、ation of individual risks. Ri$kLab.CNTM Slide8 Copulas and VaR Let X be random multivariate with distribution function Fi and Ui be standard-uniformly distributed at 0,1 nProbability-integral nQuantile Function nJoint Distribution nVaR of Portfolio Z at probability level iiii FUFUxF i )(;1 , 0)( 1 )
10、(|inf)()(|inf)( 11 xFxFxFxF iii )(:|inf)()( )(:|inf)()( 1 1 xFRxxFXVaR zFRzzFZVaR x n Z Z Z )(,),(),(),( 221121nnn xFxFxFxxxF Ri$kLab.CNTM Slide9 Functions of Copulas nRelationship between a multi-dimensional probability distribution function and its lower dimensional margins nFunctions of Copula Li
11、nk multivariate distributions to their on-dimensional margins nD.X. Li (1998, 2000) On default correlation: A copula function approach. Working paper 99-07, RiskMetrics Group. /picsresources/dlc.pdf nP.Embrechts, A.Mcneil and D.Straumann, Correlation and dependence in risk management:
12、 properties and pitfalls. In: M.A.H.Dempster(Ed.),Value at risk and beyond, Cambridge University Press, Cambridge,1999,pp.176-223. Ri$kLab.CNTM Slide10 Potential Copula Applications nInsurance nLife (multi-life products) nNon-life (multi-line covers) nIntegrated risk management (Solvency 2/偿付能力) nDy
13、namic Financial analysis (assets and liabilities Model, ALM) nFinance nStress testing (Credit) nRisk aggregation nPricing/Hedging basket derivatives nRisk measure estimation under incomplete information nOther Fields nReliability, Survival analysis nEnvironmental science, Genetics nSee math.ethz.ch/
14、embrechts Ri$kLab.CNTM Slide11 Modelling by use of Copulas nModelling by use of Copulas Identification of the marginal distributions Selection/Definition/Construction of appropriate copula to presentation of the dependence structure nExample All assets are Gaussian Joint distribution is also Gaussia
15、n Ri$kLab.CNTM Slide12 Copulas and Multivariate Distributions nJoint Probability Distribution Function is of dependence structure of multivariate nTo Analyze without studying marginal distributions Linear correlation Rank Dependence Tail Dependence . Ri$kLab.CNTM Slide13 Chapter 2 Copulas nDef. Let
16、S1,S2,Sn be nonempty subsets of R, and let H be an n-place real function such that Dom H=S1S2Sn. Let B=a,b be an n-box all of whose vertices are in Dom H. Then the H-volume of B is given by where the sum is taken over all vertices c of B, and sgn is given by Equivalently, the H-Volume of an n-box B=
17、a,b is the nth order difference of H on B where )()sgn()(cHcBVH s ofnumber oddan for if, 1 s ofnumber even an for if, 1 )sgn( kac kac c kk kk )()()( 1 1 1 1 tHtHBV b a b a b a b aH n n n n ),(),()( 111111nkkknkkk b a ttattHttbttHtH Ri$kLab.CNTM Slide14 Example of H-Volume nLet H be a 3-place real fu
18、nction with domain R3, and let B is the 3-box ,B=x1,x2y1,y2 z1,z2. Then, the H-Volume is nH-Volume can also be presented as ),(),(),(),( ),(),(),(),()( 111211121112 221212122222 zyxHzyxHzyxHzyxH zyxHzyxHzyxHzyxHBVH 0),() 1()( 2 1 2 1 1 21 21 ii iii iii H n n n uuuHBV Ri$kLab.CNTM Slide15 N-Increasin
19、g and Grounded Let H be An n-place real function and Dom H= S1S2Sn nbe n-increasing if VH(B)=0 for all n-boxes B whose vertices lie in Dom H nbe grounded if H(t)=0 for all t in Dom H such that tk=ak for at least one k nHas margins if each Sk is nonempty and has a greatest element bk Ri$kLab.CNTM Sli
20、de16 Example of n-increasing and grounded nLet H be the function with domain -1,+10,0, /2 given by Then, (should verify H is n-increasing) H is grounded since H(-1,y,z) =H(x,0,z)=H(x,y,0)=0; H is one-dimensional margins: H1(x)=H(x, /2) = (x+1)/2 H2(y)=H(1, y, /2) = 1-e-y H3(z)=H(1,z) = sinz and also
21、 2-dimensional margins H1,2(x,y)=H(x,y, /2) H2,3(y,z)=H(1,y, z) H1,3(x,z)=H(x, z) 12 sin) 1)(1( ),( y y ex zex zyxH Ri$kLab.CNTM Slide17 Def. of Copulas nDefinition - A copula function C is a multivariate uniform distribution (a multivariate distribution with uniform margins) or Dom C = I N =0,1N C
22、is grounded and N-increasing C has margins Cn which satisfy Cn (u)=C(1,.,1,u,1,.,1)=u for all u in 0,1 nDefinition - 2-Copula Dom C=0,10,1 C(0,u)=C(u,0) and C(u,1)=C(1,u)=u for all u in 0,1 C is 2-increasing : C(u1,v1) - C(u2,v2) - C(u1,v2) + C(u1,u2)0 whenever p2=(u2,v2) and p1=(u1,v1) in 0,12 such
23、 p2p1 Ri$kLab.CNTM Slide18 Alternative Definition of copula 0),() 1()( 2 1 2 1 1 21 21 ii iii iii H n n n uuuHBV nIn terms of a multivariate distribution function at 0,1n ,uniform random variables Ui: nIn terms of probability-integral transformation :Ui Fi(Xi) ,Pr),( 1 , 0),( 21121 21 nnnn n n uUuUu
24、UuuuC uuu )(,),(, )( ,Pr( )()(,),()(),()(Pr),( ,Pr),( 2211 2211 2222111121 221121 nn nn nnnn nnn xFxFxFC uUuUuU xFXFxFXFxFXFxxxF xXxXxXxxxF Ri$kLab.CNTM Slide19 Alternative Definition of Copula nDefinition. C(u1,un) is increasing in each components; C(1,1,ui,1,1) = ui for all i in 1,2,n and ui in 0,
25、1 For all (a1,an), (b1,bn) in 0,1n with aibi, where uj1=aj and uj2=bj for all j in 1,2,n 0),() 1( 2 1 2 1 1 21 21 ii iii iii n n n uuuC Ri$kLab.CNTM Slide20 Explanations nCopula is a stochastic measurement on the volume of In= 0,1n nDependence function of random variables C(F1 (x1) ,Fn (xn) is multi
26、variate probability distribution function with margins F1 ,Fn(Fi单调不减) ),( )(,),(),( )()(,),()(),()(Pr ,Pr),( 21 2211 22221111 221121 n nn nnnn nnn uuuC xFxFxFC xFXFxFXFxFXF xXxXxXxxxF Ri$kLab.CNTM Slide21 Main Concepts of Copulas nJoint Distribution Function of Random Multivariate nGeneralized Inver
27、se of a Distribution Function nDomainC=A1A2 An(always0,1n ) Rn nGrounded C(a1,)=C(,a2,)=C(., an)=0 if ai=infAi(always 0) nIncreasing/H-Volume VH(B)0 means that the mass or area of the rectangle B where BDomainCRn nUp-Limits C(b1, bi-1,ui,bi+1,bn)=ui if bi=supAi(always 1) Ri$kLab.CNTM Slide22 Chapter
28、 3 Sklar theorem nLet F be an N-dimensional distribution function with margins F1 ,Fn . Then there exists an n-copula C such that for all x in Rn or If F1 ,Fn are all continuous, then C is unique; otherwise, C is uniquely determined on RanF1 RanF1RanFn. Conversely, if C is an n-copula and F1 ,Fn are
29、 distribution functions. Then the function H defined above is an n-dimensional distribution function with margins F1 ,Fn . Ri$kLab.CNTM Slide23 Concordance ordering nExamples Gumbel Copula Gaussian Copula/Normal Copula nN-copula C1 is smaller than n-copula C2 if for all (u1,u2,.,un) in the domain su
30、ch that C1(u1,u2,.,un)C2(u1,u2,.,un) ,denoted by C1C2 The order “”called the concordance order for distributions or the stochastic order for random variables 2121 21 2 1 21 1 121 11 21 )(),(),( )1 ()(,)1 (),( 21 uuuu uu uFuFFuuC exFeexxF i x ii xx )(,),(),( ),( 1 1 1 1 2 nn ii uuuuC Nx i Ri$kLab.CNT
31、M Slide24 Frechet-Hoeffding Bounds Inequality nSpecific Copulas Note that Mn and n are n-copulas for all n=2 whereas the function Wn fails to be an n-copula for any n2 nFrechet-Hoeffding Bound nNormal Copula nBound of Copula See Prof. Embrechts, P. etal, as the fellowing Bounding Risk Measures for P
32、ortfolios with Known Marginal Risks Bounds for functions of multivariate risks Bounds for functions of dependent risks maximum0 , 1max)( production)( minimum,min)( 1 1 1 CnuuuW Cuuu CuuuM n n n n n n ( )( ) nn WuCMu CCCCCCCC 10001 Ri$kLab.CNTM Slide25 Probabilistic interpretation of the three copula
33、s nTwo random variables X and Y are counter-monotonic, or have copula of if there exists a r.v. Z such that X=fx(Z) and Y=fY(Z) with fX non- increasing and fY non-decreasing -反向单调; nTwo random variables X and Y are independent or have copula of if the dependence structure is the product copula -彼此独立
34、; nTwo random variables X and Y are co-monotonic, or have copula of if there exists a r.v. Z such that X=fX (Z) and Y=fY(Z) where the functions fX and fY are non-decreasing -同向单调; n C n MC n WC Ri$kLab.CNTM Slide26 Properties of Copula nFor n=2, let be continuous random variables. Then, are independ
35、ent iff the n-copula is . Each of the random variables is almost surely a strictly increasing function of any of others iff the n-copula of is . n C n WC Ri$kLab.CNTM Slide27 Properties of Copula nThe copula function of random variables is invariant under strictly increasing transformations (xi(xi)0
36、), i.e. C(1(x1), n(xn)= C(x1,xn) where, transformation function i(xi) are strictly increasing such as log, Exp, and |f(x)-K|+. nLet k(xk) be strictly monotone and have copula C1(x1), ,n(xn), then If only 1(x1) is strictly decreasing, then If k(uk) are all strictly decreasing, then ),1 (),(),( 1)(,2)
37、(,),(1)(,),( 12111 nxxnxxnxx uuCuuCuuC nnnnnn )1 ,1 (1),( 1, 1 1)(,),( 111 nxx n k knxx uuCnuuuC nnn Ri$kLab.CNTM Slide28 Proof in Strictly Increasing nLet X1,.,Xn have margins F1,.,Fn and let 1(X1),. , n(Xn) have margins G1,.,Gn.(all i(Xi) strictly increasing). Then, )(,),(),( )(,),(),( )(,),(),(Pr
38、 )(,)(Pr)(, )( )()(Pr)(Pr)( 2211 1 2 1 21 1 11)(, )(, )( 1 2 1 21 1 1 11111)(,),( 11 22211 21 11 nn nnXXX nnn nnnnnxx kkkkkkkk xGxGxGC xFxFxFC xXxXxX xXxXxGxGC xFxXxXxG nnn nn kk Ri$kLab.CNTM Slide29 Proof in Strictly Decreasing nLet X1,.,Xn have margins F1,.,Fn and let 1(X1),. , n(Xn) have margins
39、G1,.,Gn.(only 1(X1) strictly decreasing). Then, )(,),(),(1 ( )(,),( )(,),(),( )(,),( )(,)(),(Pr )(,)(Pr )(,)(),(Pr )(,)(Pr)(, )( 2211)(, )(, 22)(, )( 221 1 1)(, )(, 22)(, )( 2221 1 1 222 2221 1 1 11111)(,),( 221 22 1221 22 1 1 11 nnXXX nnXX nnXXX nnXX nnn nnn nnn nnnnnxx xGxGxGC xGxGC xGxGxFC xGxGC
40、xXxXxX xXxX xXxXxX xXxXxGxGC nn nn nn nn nn Ri$kLab.CNTM Slide30 Survival Copula and Joint Survival Function nJoint survival probability and survival function nSurvival copula presents the joint survival probability in terms of the survival probabilities of the n components separately (under the Skl
41、ar theorem) 联结生存函数的函数 nRelationship with Copula where z(n-i,n,1) is the set of possible vectors with (n-i) components 111111 111111 ( ,)Pr,( ,)Pr, ( ,)Pr,( ,)Pr, nnnnnn nnnnnn F xxXxXxF xxXxXx C uuUuUuuuUuUu 11 11 0w(u)(, ,1) ( ,)( (),() ( , ,)(1,1)( 1)(1w) nn n i nn iZ n i n F xxC F xF x C uuuuC Ri
42、$kLab.CNTM Slide31 Survival Copula in 2-dimension n2-dimensional survival copula nSurvival copula vs Survival distributions function 12 12 1112 11 ( , )Pr,1( )( )( , ) 1( ) 1( )2 1( , ) ( )( ) 1(1( ),1( ) ( ( ),( ) ( , ) 1(1,1) F x yXx YyF xF yF x y F xF yF x y F xF xCF xF x C F x F x C u vuvCuv 3 0
43、w(u)(, ,1) 121323123 0 121323123 ( , , )( 1)(1w) 1( , )( , )( , )( , , ) ( , , ) (1,1,1) 2( )1( ) (1,1)(1,1)(1,1)(1,1,1) i iZ n i n iiii u v wC uvwCu vCu wCv wCu v w C u v wuvw uvwC uC uu CuvCuwCvwCuvw PrXx, YyPrXx, Yy X X Y Y P PPrX=x, Y=yPrX=x, Y=y Ri$kLab.CNTM Slide32 Conditional Distribution cmp
44、 Survival Copula nBayes Formula (joint probability ruler) nConditional distribution nTail dependence Measure Pr ,Pr |Pr yY yYxX yYxX Pr|Pr,PryYyYxXyYxX ) 1 , 0,;1 , 0Unioform,where 1 )1 ,1 (1 )(1 ),()()(1 1 )1 ,1 ( Pr ,Pr )( ),( Pr ,Pr )()(| )()(Pr|Pr 2 21 2 1111 1111 vuVU v vuCvu yF yxFyFxF v vuC v
45、V vVuU yF yxF yY yYxX vFyVFYuFxUFXyYxX Ri$kLab.CNTM Slide33 Survival Copula and Dual of a Copula Ri$kLab.CNTM Slide34 Confusion of “survival” nConfusion on Notation (R.B.Nelsen, pp.28-29) nThe survival copula of X and Y, the joint survival function to its univariate margins nThe joint survival funct
46、ion for two uniform (0,1) random variables whose joint distribution function is the copula C nRelationship ( , )1( )( )( , ) ( , ) 1(1,1) (Pr1,1) H x yF xG yH x y C u vuvCuv uuVv ( , )Pr,1( , )C u vUu VvuvC u v )1 ,1 ( ),(vuCvuC Ri$kLab.CNTM Slide35 Dual of Copula and co-copula nDual of Copula Some
47、of margins/components are less than or equal nCo-copula some of margins/components are greater than nNeither of these is a copula, but when C is the copula of, express a probability of 1211 1 11 1 12 ( ,)PrPr 1 Pr1 Pr, 1(1,1,1) n niinn i n iinn i n C u uuUuUuUu notUuUuUu Cuuu * 111 1 11 1 1 ( ,)PrPr
48、 1 Pr1 Pr, 1(1,1) n niinn i n iiin i n C uuUuUuUu notUuUuUu Cuu Ri$kLab.CNTM Slide36 Density of Copula nThe Density c(u1 , un) associated to the Copula C(u1 , un) is given by nThe density f(x1 , xn) of n-dimensional distribution F associated with the copula C(u1 , un) is presented as nExamples n n n
49、 n uu uuC uuc 1 1 1 ),( ),( n i iiniin xfxFxFcxxf 1 11 )()(,),(),( )(),( )1 ( )1 ( )()( )()( ),( ) 1(exp(),( 11 1 1 1 22 1 22 1 1 2 1 1 2 12 2 2 1 2 1 iiii n i T n n n n t T n utu uuc uuc i n Ri$kLab.CNTM Slide37 Copulas and Pearson Correlation nPearson Correlation nThe linear correlation is a measu
50、re of linear dependence If r.v. X and Y are independent, then (X,Y)=0; For r.v. X and Y, there exists Y=aX+b a.s., or PrY=aX+b=1 for aR-0, bR, (X,Y)=1 For any r.v. X and Y (aX+b, cY+d)= sign(ab)(X,Y) (AX+a, BY+b)= ACov(X,Y)Bt nExample )()( )( ),( 22 jjii jjii ji XEXE XXE XX 0 )()( 0 ),( ),1 , 0( 22
51、2 EE N ) 2 arcsin( 6 )(),( )()(set and), 0( yTxT xxTN y x Ri$kLab.CNTM Slide38 Drawbacks of linear correlation nLinear correlation of random variables X and Y is not defined if the variance of X or Y is infinite. Here exist examples of t- student distribution with =2, Non-life actuaries modelling (a
52、nd high-frequency data); nLinear correlation can easily be misinterpreted. That is, Independent NOT be equivalent to uncorrelated except Normal distribution; nLinear correlation is not invariant under non-linear strictly increasing transformations; nGiven distribution functions F and G for X and Y ,
53、 all linear correlations between -1 and 1 can in general not be obtained by a suitable choice of the joint distribution. nHot to determine the choice Copula and its unknown parameters under the given F and G and samples, i.e.,parameter estimation and infering; Ri$kLab.CNTM Slide39 Chapter 4 Dependen
54、ce nThe Real World is full of magic nCorrelation Dependence with Copula nConcordance nDependence nSummary of different copula functions “Dependence relations between random variables is one of the most widely studied subjects in probability and statistics. The nature of the dependence can take a var
55、iety of forms and unless some specific assumptions are made about the dependence, no meaningful statistical model can be contemplated.” Jogdeo (1982) ,“Concept of dependence,” in Encyclopedia of Statistical Science, Vol.1,S.Kotz and N.L.Johanson, Ediotrs(John Weilry X,-X =-1 X,Y+1=X,X X,Y=Y,X if X a
56、nd Y are independent, then X,Y = =0 X,-Y= -X,Y=- X,Y If C1xj)and(yiyj) or (xixj)and(yixj)and(yiyj) or (xiyj) i.e., (xi-xj) (yi-yj)y|X x is a non- increasing function of x for all y, denoted by RTI(Y|X). nX is right tail increasing in Y if PrXx|Y y is a non- increasing function of y for all x, denote
57、d by RTI(X|Y). )(/ ),(|PrxFyxHxXyY )(/ ),(|PrxGyxHyYxX )(/ ),(|PrxFyxHxXyY )(/ ),(|PryGyxHyYxX Ri$kLab.CNTM Slide62 Properties of Tail Monotonicity/单调性 nIf X and Y satisfy each of the tail mono-tonicity conditions (i.e.,LTD or RTI), then X and Y are positively quadrant dependence. nTail Monotonicity
58、 presented in Copula LTD(Y|X) iff C(u,v)/u is non-increasing in u for any v; LTD(X|Y) iff C(u,v)/v is non-increasing in v for any u; RTI(Y|X) iff (1-u-v+C(u,v)/(1-u) is non-decreasing in u for any v; RTI(X|Y) iff (1-u-v+C(u,v)/(1-v) is non-decreasing in v for any u. Ri$kLab.CNTM Slide63 Definition o
59、f Stochastic Monotonicity nY is stochastically increasing in X if PrYy|X=x is a non- decreasing function of x for all y, denoted by SI(Y|X); nX is stochastically increasing in Y if PrXx|Y=y is a non- decreasing function of x for all y, denoted by SI(X|Y); nY is stochastically decreasing in X if PrYy
60、|X=x is a non- increasing function of x for all y, denoted by SD(Y|X); nX is stochastically decreasing in Y if PrXx|Y=y is a non- increasing function of x for all y, denoted by SD(X|Y). Ri$kLab.CNTM Slide64 Tail Dependence nMotivation - Particularly concerned with extreme values, EVT modelling nDefi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025儿童医院股骨髁上骨折锁定钢板考核
- 2025河南郑州大桥医院社区医院招聘51人模拟试卷及1套参考答案详解
- 2025广东深圳市宝安区陶园中英文实验学校招聘初中英语教师2人模拟试卷及答案详解一套
- 上海市中医院采购与付款循环关键控制点测试试题
- 2025广西南宁上林县白圩镇中心卫生院招聘村卫生室公共卫生服务协助人员5人考前自测高频考点模拟试题附答案详解
- 2025年哈尔滨市香电幼儿园招聘3人模拟试卷及答案详解(历年真题)
- 石家庄市中医院第三方系统对接管理试题
- 2025儿童医院消化内科创新思维与成果考核
- 邢台市中医院肾脏病贫血规范化治疗考核
- 沧州市中医院妇科肿瘤营养支持考核
- 第三节 区域联系与区域协调发展教学设计高中地理湘教版2019选择性必修2-湘教版2019
- 2025贵州黔西南州普安县县直单位、街道考调事业单位工作人员47人考试参考题库及答案解析
- 百日安全无事故活动方案
- 2025走进人工智能2.0
- 2025中新社(北京)国际传播集团有限公司新疆分公司招聘6人考试历年参考题附答案详解
- 2025年辽宁沈阳市近海控股集团招聘24人笔试参考题库附带答案详解
- 拼多多公司技能培训
- 写作技巧:三十六种故事创作套路
- 2025-2026学年教科版(2024)小学体育与健康二年级全一册《饮水促健康》教学设计
- 教案2025秋形势与政策纪念抗战胜利坚定民族信念抗战胜利80周年
- 湘潭、成都工厂VDA63-2023审核员培训考核附有答案
评论
0/150
提交评论