



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、函数 一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数中;余切函数中;6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。二、函数的解析式的常用求法:1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法三、函数的值域的常用求法:1、换元法;2、配方法;3、判别式法;4、几何法;5、不等式法;6、单调性法;7、直接法四、函数的最值的常用求法: 1、配方法;2、换元法;3、不等式法;4、几何法;5、单调性法五、函数单调性的常
2、用结论:1、若均为某区间上的增(减)函数,则在这个区间上也为增(减)函数2、若为增(减)函数,则为减(增)函数3、若与的单调性相同,则是增函数;若与的单调性不同,则是减函数。4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。六、函数奇偶性的常用结论:1、如果一个奇函数在处有定义,则,如果一个函数既是奇函数又是偶函数,则(反之不成立)2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。3、一个奇函数与一个偶函数的积(商)为奇函数。4、两个函数和复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。5、若函数的定义域关于原点对称,则可以表示为,该式的特点是:右端为一个奇函数和一个偶函数的和。表1指数函数对数数函数定义域值域图象性质过定点过定点减函数增函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 分布式光伏发电并网系统容量规划方案
- 城区错接混接改造及雨污水管网项目建设工程方案
- 重难点解析人教版八年级上册物理物态变化《升华和凝华》专题训练试题(含解析)
- Wnt-C59-Standard-生命科学试剂-MCE
- 达标测试人教版八年级上册物理物态变化《熔化和凝固》专题练习试卷(含答案详解版)
- 基于分子催化剂-半导体复合体系的芳烃光催化氟烷基化反应研究
- 基于SWMM-MIKE 21耦合模型对河道滞留区的治理优化
- 建筑结构优化设计与实施方案
- 公路路基加固技术方案
- 难点详解人教版八年级上册物理物态变化《温度》专题练习练习题(含答案详解)
- 2025年中国替代蛋白新式发酵行业市场分析及投资价值评估前景预测报告
- 2025-2026学年江苏省徐州市八年级(上)第一次月考数学试卷(含答案)
- 2025至2030中国航空制造业行业发展现状及细分市场及有效策略与实施路径评估报告
- (2025年)社区工作者考试真题库附答案
- 流延膜设备安全操作培训课件
- 专题1:匀变速直线运动的重要结论+课件-2025-2026学年高一上学期物理人教(2019)必修第一册
- 医学基础期末试题及答案
- 2025年放射诊疗培训试题及答案
- 2025年平安网格测试题库及答案
- 重症胰腺炎课件教学
- 3.2营造清朗空间教学设计 2025-2026学年统编版道德与法治八年级上册
评论
0/150
提交评论