




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021高二数学复习学问点归纳精选5篇 数学被很多同学认为是一门很难的学科,高中数学更是如此,但是数学作为三大主课之一,所占的重量自是不清,很多同学也明白假如数学学不好的话想要考上抱负的高校是天方夜谭,但是苦于无学习之法,那么高中数学都有哪些学习方法呢?下面就是我给大家带来的高二数学学问点,期望大能关怀到大家! 高二数学学问点1 直线与平面的位置关系 2.1空间点、直线、平面之间的位置关系 2.1.1 1平面含义:平面是无限延展的 2平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母、等表示,如平面
2、、平面等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面ac、平面abcd等。 3三个公理: (1)公理1:假如一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 al bl=l a b 公理1作用:推断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:a、b、c三点不共线=有且只有一个平面, 使a、b、c。 公理2作用:确定一个平面的依据。 (3)公理3:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为:p=l,且pl 公理3作用:判定两个平面是否相交的依据 2.1.2空
3、间中直线与直线之间的位置关系 1空间的两条直线有如下三种关系: 共面直线 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线:不同在任何一个平面内,没有公共点。 2公理4:平行于同一条直线的两条直线相互平行。 符号表示为:设a、b、c是三条直线 ab cb 强调:公理4实质上是说平行具有传递性,在平面、空间这共性质都适用。 公理4作用:推断空间两条直线平行的依据。 3等角定理:空间中假如两个角的两边分别对应平行,那么这两个角相等或互补 4留意点: a与b所成的角的大小只由a、b的相互位置来确定,与o的选择无关,为了简便,点o一般取在两直线中的一条上; 两条
4、异面直线所成的角(0,); 当两条异面直线所成的角是直角时,我们就说这两条异面直线相互垂直,记作ab; 两条直线相互垂直,有共面垂直与异面垂直两种情形; 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。 2.1.32.1.4空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系: (1)直线在平面内有很多个公共点 (2)直线与平面相交有且只有一个公共点 (3)直线在平面平行没有公共点 指出:直线与平面相交或平行的状况统称为直线在平面外,可用a来表示 aa=aa 2.2.直线、平面平行的判定及其性质 2.2.1直线与平面平行的判定 1、直线与平面平行的判定定理:平
5、面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。 简记为:线线平行,则线面平行。 符号表示: a b=a ab 2.2.2平面与平面平行的判定 1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。 符号表示: a b ab=p a b 2、推断两平面平行的方法有三种: (1)用定义; (2)判定定理; (3)垂直于同一条直线的两个平面平行。 2.2.32.2.4直线与平面、平面与平面平行的性质 1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。 简记为:线面平行则线线平行。 符号表示: a aab =b 作用:利用
6、该定理可解决直线间的平行问题。 2、定理:假如两个平面同时与第三个平面相交,那么它们的交线平行。 符号表示: =aab =b 作用:可以由平面与平面平行得出直线与直线平行 2.3直线、平面垂直的判定及其性质 高二数学学问点2 考点一:向量的概念、向量的基本定理 【内容解读】了解向量的实际背景,把握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,把握平面对量的基本定理。 留意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。 考点二:向量的运算 【内容解读】向量的运算要求把握向量的加减法运算,会用平行四边
7、形法则、三角形法则进行向量的加减运算;把握实数与向量的积运算,理解两个向量共线的含义,会推断两个向量的平行关系;把握向量的数量积的运算,体会平面对量的数量积与向量投影的关系,并理解其几何意义,把握数量积的坐标表达式,会进行平面对量积的运算,能运用数量积表示两个向量的夹角,会用向量积推断两个平面对量的垂直关系。 【命题规律】命题形式主要以选择、填空题型消逝,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。 考点三:定比分点 【内容解读】把握线段的定比分点和中点坐标公式,并能娴熟应用,求点分有向线段所成比时,可借助图形来关怀理解。 【命题规律】重点考查定
8、义和公式,主要以选择题或填空题型消逝,难度一般。由于向量应用的广泛性,经常也会与三角函数,解析几何一并考查,若消逝在解答题中,难度以中档题为主,间或也以难度略高的题目。 考点四:向量与三角函数的综合问题 【内容解读】向量与三角函数的综合问题是高考经常消逝的问题,考查了向量的学问,三角函数的学问,达到了高考中试题的掩盖面的要求。 【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。 考点五:平面对量与函数问题的交汇 【内容解读】平面对量与函数交汇的问题,主要是向量与二次函数结合的问题为主,要留意自变量的取值范围。
9、【命题规律】命题多以解答题为主,属中档题。 考点六:平面对量在平面几何中的应用 【内容解读】向量的坐标表示实际上就是向量的代数表示.在引入向量的坐标表示后,使向量之间的运算代数化,这样就可以将“形”和“数”紧密地结合在一起.因此,很多平面几何问题中较难解决的问题,都可以转化为大家生疏的代数运算的论证.也就是把平面几何图形放到适当的坐标系中,赐予几何图形有关点与平面对量具体的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决. 【命题规律】命题多以解答题为主,属中等偏难的试题。 高二数学学问点3 1.计数原理学问点 乘法原理:n=n1n2n3nm(分步)加法原理:n=
10、n1+n2+n3+nm(分类) 2.排列(有序)与组合(无序) anm=n(n-1)(n-2)(n-3)-(n-m+1)=n!/(n-m)!ann=n! cnm=n!/(n-m)!m! cnm=cnn-mcnm+cnm+1=cn+1m+1k?k!=(k+1)!-k! 3.排列组合混合题的解题原则:先选后排,先分再排 排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置. 捆绑法(集团元素法,把某些必需在一起的元素视为一个整体考虑) 插空法(解决相间问题)间接法和去杂法等等 在求解排列与组合应用问题时,应留意
11、: (1)把具体问题转化或归结为排列或组合问题; (2)通过分析确定运用分类计数原理还是分步计数原理; (3)分析题目条件,避开“选取”时重复和遗漏; (4)列出式子计算和作答. 经常运用的数学思想是: 分类争辩思想;转化思想;对称思想. 4.二项式定理学问点: (a+b)n=cn0ax+cn1an-1b1+cn2an-2b2+cn3an-3b3+cnran-rbr+-+cnn-1abn-1+cnnbn 特殊地:(1+x)n=1+cn1x+cn2x2+cnrxr+cnnxn 主要性质和主要结论:对称性cnm=cnn-m 二项式系数在中间。(要留意n为奇数还是偶数,答案是中间一项还是中间两项)
12、全部二项式系数的和:cn0+cn1+cn2+cn3+cn4+cnr+cnn=2n 奇数项二项式系数的和=偶数项而是系数的和 cn0+cn2+cn4+cn6+cn8+=cn1+cn3+cn5+cn7+cn9+=2n-1 通项为第r+1项:tr+1=cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。 5.二项式定理的应用:解决有关近似计算、整除问题,运用二项开放式定理并且结合放缩法证明与指数有关的不等式。 6.留意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区分,在求某几项的系数的和时留意赋值法的应用。 高二数学学问点4 一、集合概念 (1)集合中
13、元素的特征:确定性,互异性,无序性。 (2)集合与元素的关系用符号=表示。 (3)常用数集的符号表示:自然数集;正整数集;整数集;有理数集、实数集。 (4)集合的表示法:列举法,描述法,韦恩图。 (5)空集是指不含任何元素的集合。 空集是任何集合的子集,是任何非空集合的真子集。 函数 一、映射与函数: (1)映射的概念:(2)一一映射:(3)函数的概念: 二、函数的三要素: 相同函数的推断方法:对应法则;定义域(两点必需同时具备) (1)函数解析式的求法: 定义法(拼凑):换元法:待定系数法:赋值法: (2)函数定义域的求法: 含参问题的定义域要分类争辩; 对于实际问题,在求出函数解析式后;必
14、需求出其定义域,此时的定义域要依据实际意义来确定。 (3)函数值域的求法: 配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式; 逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,型如:; 换元法:通过变量代换转化为能求值域的函数,化归思想; 三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; 基本不等式法:转化成型如:,利用平均值不等式公式来求值域; 单调性法:函数为单调函数,可依据函数的单调性求值域。 数形结合:依据函数的几何图形,利用数型结合的方法来求值域。 高二数学学问点5 一、集合概念 (1)集合中元素
15、的特征:确定性,互异性,无序性。 (2)集合与元素的关系用符号=表示。 (3)常用数集的符号表示:自然数集;正整数集;整数集;有理数集、实数集。 (4)集合的表示法:列举法,描述法,韦恩图。 (5)空集是指不含任何元素的集合。 空集是任何集合的子集,是任何非空集合的真子集。 函数 一、映射与函数: (1)映射的概念:(2)一一映射:(3)函数的概念: 二、函数的三要素: 相同函数的推断方法:对应法则;定义域(两点必需同时具备) (1)函数解析式的求法: 定义法(拼凑):换元法:待定系数法:赋值法: (2)函数定义域的求法: 含参问题的定义域要分类争辩; 对于实际问题,在求出函数解析式后;必需求
16、出其定义域,此时的定义域要依据实际意义来确定。 (3)函数值域的求法: 配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式; 逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,型如:; 换元法:通过变量代换转化为能求值域的函数,化归思想; 三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; 基本不等式法:转化成型如:,利用平均值不等式公式来求值域; 单调性法:函数为单调函数,可依据函数的单调性求值域。 数形结合:依据函数的几何图形,利用数型结合的方法来求值域。 三、函数的性质: 函数的单调性、奇偶性、周期性 单调
17、性:定义:留意定义是相对与某个具体的区间而言。 判定方法有:定义法(作差比较和作商比较) 导数法(适用于多项式函数) 复合函数法和图像法。 应用:比较大小,证明不等式,解不等式。 奇偶性:定义:留意区间是否关于原点对称,比较f(x)与f(-x)的关系。f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数; f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。 判别方法:定义法,图像法,复合函数法 应用:把函数值进行转化求解。 周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+t)=f(x),则t为函数f(x)的周期。 其他:若函数f(x)对定义域内的任意x满足:f
18、(x+a)=f(x-a),则2a为函数f(x)的周期. 应用:求函数值和某个区间上的函数解析式。 四、图形变换:函数图像变换:(重点)要求把握常见基本函数的图像,把握函数图像变换的一般规律。 常见图像变化规律:(留意平移变化能够用向量的语言解释,和按向量平移联系起来思考) 平移变换y=f(x)y=f(x+a),y=f(x)+b 留意:()有系数,要先提取系数。如:把函数y=f(2x)经过平移得到函数y=f(2x+4)的图象。 ()会结合向量的平移,理解依据向量(m,n)平移的意义。 对称变换y=f(x)y=f(-x),关于y轴对称 y=f(x)y=-f(x),关于x轴对称 y=f(x)y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称 y=f(x)y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(留意:它是一个偶函数) 伸缩变换:y=f(x)y=f(x), y=f(x)y=af(x+)具体参照三角函数的图象变换。 一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称; 点击查看:高中数学学问点 五、反函数: (1)定义: (2)函数存在反函数的条件: (3)互为反函数的定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家居用品供应链管理协议
- 商业物业销售代理协议
- 农业科技发展联合建设合同
- 2025河南新乡市新鼎高级中学教师招聘备考考试题库附答案解析
- 农业资源监测与利用协议
- 2025江西吉安市遂川县城控人力资源管理有限公司招聘广告技术主管1人考试参考题库及答案解析
- 2025年滁州市消防救援支队政府专职消防员招聘105名备考考试题库附答案解析
- 2025年智慧农业示范园智能灌溉系统节水效果分析报告
- 2025海南省通信网络技术保障中心招聘事业编制人员(第2号)考试参考题库及答案解析
- 2025年咸宁高新区管委会招聘聘用制员工招聘20人(第二批)备考考试题库附答案解析
- GB/T 40079-2021阀门逸散性试验分类和鉴定程序
- GB/T 38537-2020纤维增强树脂基复合材料超声检测方法C扫描法
- GB/T 26479-2011弹性密封部分回转阀门耐火试验
- 部编人教版道德与法治四年级上册全册完整版课件
- 人教版七年级美术上册全套课件
- 混凝土结构跳仓施工方案
- 水稳摊铺作业安全技术交底
- 二年级劳动与技术折扇课件
- 公墓施工组织设计
- 油气集输管线管道工程征地外协管理方案
- 《智慧农业》的ppt完整版
评论
0/150
提交评论