化工原理主要知识点_第1页
化工原理主要知识点_第2页
化工原理主要知识点_第3页
化工原理主要知识点_第4页
化工原理主要知识点_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、化工原理(上)各章主要知识点绪论三个传递:动量传递、热量传递和质量传递三大守恒定律:质量守恒定律物料衡算;能量守恒定律能量衡算;动量守恒定律动量衡算第一章流动流体第一节流体静止的基本方程、密度1.气体密度:mpMVRT2.液体均相混合物密度:1a1a2an-(m 混合液体的密度,a各组分质量分数,n各组分密度)m12n3.气体混合物密度:m112 2n n ( m混合气体的密度,各组分体积分数)4.压力或温度改变时,密度随之改变很小的流体成为不可压缩流体(液体);若有显著的改变则称为可压缩流体(气体)。、.压力表示方法1、常见压力单位及其换算关系:1atm 101300 Pa 101.3kPa

2、0.1013MPa10.33mH2O 760mmHg2 、压力的两种基准表示:绝压(以绝对真空为基准)、表压(真空度)(以当地大气压为基准,由压力表或真空表测岀)表压=绝压一当地大气厂 真空度=当地大气三、流体静力学方程1、静止流体内部任一点的压力,称为该点的经压力,其特点为:(1)从各方向作用于某点上的静压力相等;(2)静压力的方向垂直于任一通过该点的作用平面;(3)在重力场中,同一水平面面上各点的静压力相等,高度不同的水平面的经压力岁位置的高低而变化。2 、流体静力学方程(适用于重力场中静止的、连续的不可压缩流体)P2P1gpgP1g(z1 Z2)d (Z1 Z2)gzp (容器内盛液体,

3、上部与大气相通,p/ g 静压头,头一液位高度,zp 位压头或位头) 上式表明:静止流体内部某一水平面上的压力与其位置及流体密度有关,所在位置与低则压力愈大。四、流体静力学方程的应用1、 U形管压差计指示液要与被测流体不互溶,且其密度比被测流体的大。测量液体:P1 p2 ( 0 )gRg(z2乙)测量气体:p1 p20gR1)gR2、双液体u形管压差计 p1 p2( 2第二节流体流动的基本方程一、基本概念311 、体积流量(流量 Vs):流体单位时间内流过管路任意流量截面(管路横截面)的体积。单位为m s2 、质量流量(ms ):单位时间内流过任意流通截面积的质量。单位为 kg s 1msVs

4、流速u -s 质量流速G sAA、黏性:流体所具有的一种拽流体相对运动的性质。(1)气体的黏性力或内摩擦力产生的原因是速度不等的流体层之间动量传递的结果2)液体黏性力主要由分之间的吸引力所产生。(内摩擦应力或剪应力)与两流体层间的速度梯度4 、牛顿黏性定律:两相邻流体层之间单位面积上的内摩擦力d /dy成正比,即(,一一方向相同时取正号,否则取负号)dy服从此定律的流体称为牛顿型流体。原因:温度升高时,气体分子运动的平 对于液体,温度升高时,液体体积膨胀,4、黏度的单位为Pa s 常见流体用Pas(1)流体的黏度随温度而变,温度升高,气体的黏度增大,液体的黏度减小。均速度增大,两相邻气体层间分

5、子交换的速度加快,因而内摩擦力和黏度随之减小。分之间距离增大,吸引力迅速减小,因而黏度随之下降。(2)流体的黏度一般不随压力而变化。、质量衡算连续性方程设流体在管路中做连续稳定流动,从截面1-1流入,从截面2-2流出,则s1s21U1A12U2A2对于不可压缩流体, 12常数,则u1A1 u2A2222对于圆管,A d /4,d为直径,则u1d1u2d2如果管路有分支,则s s1 s2三、机械能衡算方程1 、理想流体是指没有黏性的流体,即黏度0的流体2 、内能(U),位能(gz),动能(u2/2), 提供给流体外功是为正,流体向外界做功时为负)压力能(p/),热量(qe,吸热为正,放热为负),

6、外功(We,外界3 、可压缩理想流体机械能衡算关系:2U1gz22U22P2(we 外功)4、1kg不可压缩理想流体稳定流动时的机械能衡算式:(伯努利方程)gz22U1P1gz22氏 P2225、不可压缩实际流体的机械能衡算式:2 2U1 P1U2 P2gz1we gz2wf ( wf 阻力损失)22第三节流体流动现象一、雷诺数Redu Re 一1 、雷诺数的量纲为1,故其值不会因采用的单位制不同而改变,但数群中的各个物理量必须采用同一单位制。2 、流体在圆形直管中流动,Re4000时为湍流;Re在20004000之间时流动处于一种过渡状态。二、管内流动分析1 、层流时的速度分布十r2)P1

7、P2 r2l2R2)R2 体积流量-saxmax (1ax故平均速度 U22 、层流时的阻力损失max即层流时平均速度等于管中心处最大速度的一半。哈根一伯谡叶公式:Pf32 lu3 、湍流时的速度分布(1L)1/nmaxr /(n与Re大小有关,Re愈大,n值也愈大。)2n2平均速度 u(n 1)(2 n1)max (当 n=7 时,U=max)第四节管内流动的阻力损失一、沿程损失的计算通式及其用于层流 范宁公式:单位质量流体的沿程损失:Wfkg 1)单位体积流体的沿程损失:Pfwf单位重量流体的沿程损失:hfWf称为摩擦系数或摩擦因数g64丄工(Jd 2u2(Jd 2gm 3或 Pa)1或

8、m)二、量纲分析法(定理)Re(层流时与Re成反比 )三、湍流时的摩擦系数.叫68 x0.23花)(适用范围为Re 4000 及d )四、非圆形管内的沿程损失2卅kgwf1)de水力半径流通截面积润湿周边(润湿周边指流体与管壁面接触的周边长度)层流时的阻力损失Re(C为常数,量纲为1,对于正方形、正三角形或环形,C 分别为 57、53、96)五、局部阻力损失1 、阻力系数法:wf局部阻力系数,(1) 突然扩大:(2) 突然缩小:新充满整个管截面。当流体流过突然扩大的管道时,流速减小,压力相应增大。此时当流体由大管流入小管时,流股突然减小,到缩脉时,流股截面缩到最小,之后开始逐渐扩大,直至重 当

9、流体从容器流进管道时,j 0.5,称为管入口阻力系数。01,称为管道出口阻力系数。2 、当量计算法(当量长度局部阻力损失:wfle )应d 2六、管内流动总阻力损失的计算在管路系统中,总阻力等于沿程损失与局部损失之和,对于等径管,有Wf (d(lle U2一)三若管路系统中存在不同管径段,管路总阻力损失应将等径段的阻力损失相加。第五节管路计算一、简单管路1、 简单管路是没有分支或汇合的管路,其特点为:(1)通过各管段的质量流量不变,对于不可压缩流体的体积流量也 不变(指稳定流动);(2)整个管路的阻力损失为各段阻力损失之和。2、设计型问题(1) 计算泵的有效功率(例1-11)(2) 计算管径(

10、例1-12)3、操作型问题(1)操作性问题分析(例1-13 )管内流量应减小。21) d2管内流量变化:将阀门开度减小后,简单管路中阻力系数的变大,如阀门关小等,将导致管内流量减小,阀门上游压力上升,下游压力减小。此规律具有 普遍性。(2)计算流量(例1-14)二、复杂管路1、复杂管路只指有分支的管路,包括并联管路、分支(或汇支)管路。2、并联管路特点:总流量等于个并联支管流量之和;并联各支管的阻力损失相等。3、并联支管中,细而长的支管通过的流量小,粗而短的支管通过的流量大。4、分支(或汇合)管路的特点:总流量等于各支管流量之和;可在分支点(或汇合点)处将其分为若干个简单管 路,对于每一段简单

11、管路,仍然满足机械能衡算方程。第六节流量测量、变压头的流量计 (恒截面,变压头)1、测速管(皮托管)被测流体为液体:v2 gR( 0)(指示液密度RU 形管压差计读数)被测流体为液体:v2gR 0皮托管优点:阻力小,适于测量大直径气体管路内的流速。 缺点:不能直接测岀平均速度,且压差读数小,常要放大才能读得准确。2 、孔板U0 C0 . 2gR( )( Co 孔板系数)体积流量 Vs uA CoAo 2gR( 0)孔板系数Co f Re,A孔板安装位置:上下游要各有一段等径直管作为稳定段,上游至少10d1,下游至少5d1。孔板优点:构造简单,制造与安装都比较方便;缺点:阻力损失大。3 、文丘里

12、管优点:阻力损失小,相同压差读数下流量比孔板大,对测量含有固体颗粒的液体也较孔板适用;缺点:加工较难,精 度要求高,因而造价高,安装时需占去一定管长位置。、变截面流量计 (恒压头,变截面) 转子流量计(简称为转子计)第二章流体输送机械第一节离心泵一、离心泵的操作原理与构造1 、操作原理 (主要靠高速旋转的叶轮所产生的离心力)(1 )开动前泵内要先灌满所输送的液体。像这种因泵壳内存在气体而导致吸不上液的现象,称为“气离心泵开动是如果泵壳内和吸入管路内没有充满液体,它便没有抽吸液体的能力,这是因为空气的密度比液体小得多, 随着叶轮旋转所产生的离心力不足以造成吸上液体所需的真空度。缚”。(2 )离心

13、泵最基本的部件为叶轮与泵壳。、离心泵的理论压头与实际压头1、压头的意义 泵向单位重量液体提供的机械能,称为泵的压头(或扬程) 对于任一管路输送系统,所需压头he为2U,用符号H表示,单位为mheZ g2ghf(z升举咼度,P/g 液体静压头的增量,2u /2g 动压头的增量,与其他项相比,可忽略,hf2 、全管路的压头损失) 理论压头(1)叶轮进口与岀口之间列伯努利方程:(2)22理论压头:h丛一臼 C 乞g 2g液体从点1运动到点2,静压头之所以增加(p2 P1) / g,其原因有二: 液体在叶轮内受到离心力作用,接受了外功; 相邻两叶片所构成的通道的截面积自内向外逐渐扩大,液体通过时的速度

14、逐渐变小,使得部分动能转变为静(c1,c2 液体的绝对速度)压能。(3)离心泵理论压头表达式(离心泵的基本方程)C2U2 COS 2U2C2U(C2u 绝对速度 C在周边切线方向上的分速度)g(4 )理论压头与流量的关系Q cot 22 b2【式中Q 泵的流量,m3 s 叶轮周边宽度】H叶轮旋转的角速度;r2叶轮的半径;2 叶片的装置角;小;当3、与Q呈线性关系,变化率的正负取决于装置角2。当2=90,COS 2=0,叶片径向,H 不随Q变化;当 实际压头压头损失:叶片间的环流;阻力损失;冲击损失。0,叶片后弯,H 随Q的增大而减cos 2 0,叶片前弯,H 随Q的增大而增高。22 90,、离

15、心泵的主要性能参数1、压头和流量H h。PcPb2 2UC Ubh h_Pc_h fbc h02gPc Pb(真空)2、有效功率、轴功率和效率(1)泵内的机械能损耗:水力损失;容积损失;机械损失。(2)有效功率:Ne HQ g轴功率N效率 NNNe HQ g四、离心泵的特性曲线及其应用1、离心泵的特性曲线(1) 离心泵的特性曲线由以下曲线组成:H Q曲线;N Q曲线; Q曲线;(NPSH )r线。(2) 泵高效区:最高效率土 5%- 8%区域(3) 各种型号的离心泵各有其特性曲线,形状基本上相似,其共同特点如下: 压头随流量的增大而下降; 功率随流量的增大而上升(离心泵在启动前应关闭岀口阀,使

16、泵在所需功率最小的条件下启动,以减少电动机的启动电流,同时也避免岀口管线的水力冲击); 效率现随流量的增大而上升,达到一最大之后再下降。2、液体性质对离心泵特性的影响Q曲线无影响,但n HQ g ,故 T,N Q曲线T。521210 m s 时,如汽油、煤油、轻柴油等,则黏度对离心泵的特性1s 时,H ,N ,(1) 密度的影响:对H Q曲线、(2) 黏度的影响:当液体的运动粘度小于曲线的影响可忽略不计;当2 10 5m3、转速与叶轮尺寸对离心泵的影响(1)转速n的影响当角速度变化不大时(20% -2A - BQ 2 n(2)叶轮尺寸的影响泵在原转速n下的特性曲线方程:H A BQ2当叶轮直径

17、因切割而变小时,若变化程度小于20%则-若不变-1、管路特性方程2upuheZg2g五、离心泵的工作点与流量调节hf可简化为he A BQ2按此式标绘岀的曲线称为管路特性曲线。2、工作点与流量调节(1) 工作点:将液体送过管路所需的压头与泵对液体所提供的压头恰好相等时的流量,离心泵特性曲线与管路特性曲线的交点M,它表示泵所实际输送的流量和所提供的压头。(2) 流量调节为调节流量,即改变工作点,可采用两种方法:改变管路特性曲线(调节阀门)称为泵在官路上的工作点。(即;改变泵的特性曲线(改变泵的转速或切割叶轮)六、离心泵的安装高度1、安装高度:离心泵的安装位置与被吸入液体液面的垂直高度。2、“汽蚀

18、”:使液体以很大的速度从周围冲向气泡中心,产生频率很高、瞬时压力很大的冲击的现象。3、 为避免发生汽蚀,就要求泵的安装高度不超过某一定值。采用“汽蚀余量”,又称净正吸上高度(NPSH来表示蹦蚀余量称为最小汽蚀余量,表示为hminPe,minhmin(2ue)Pvg2gg的吸上性能。4、汽蚀余量hh (4g2;g)Pvgh一定为正值,h愈大,愈能防止出现汽蚀。泵刚好发生汽蚀时Pe降为Pe,min、Pk恰好等于Pv的汽允许汽蚀余量h允许hmin 0.3 ( m)泵的安装高度Zs允许Ps PV gghf (s e)h允许实际安装高度比允许值低1m 七、离心泵的类型、选用、安装与操作第二节其他类型泵第

19、三节通风机、鼓风机、压缩机和真空泵一、分类:通风机:排气压力不大于 15kPa;(气体输送)鼓风机:排气压力为15 300kPa,压缩比小于4;(气体输送) 压缩机:排气压力大于 300kPa,压缩比大于4;(产生高压气体) 真空泵:排气压力为大气压,压缩比范围很大。(产生真空)2 、往复压缩机操作循环:压缩阶段;压出阶段(有余隙);膨胀阶段;吸入阶段第五章传热第一节概述一、传热的三种基本方式:热传导、对流和辐射1 、热传导(1) 热传导:热量从物体内温度较高的部分传递到温度较低的部分或者传递到与之接触的温度较低的另一物体的过程 称为热传导,简称导热。(2) 导热机理: 气体:气体分子做不规则

20、热运动时相互碰撞。 固体:a、导体固体:许多自由电子在晶格之间运动,自由电子导电也导热;b、非导体固体:晶格结构的振动(即原子、分子在其平衡位置附近的振动)。 液体:主要靠原子、分子在其平衡位置的振动,振动的平衡位置间歇地发生移动。2 、对流:流体各部分质点发生相对位移而引起的热量传递的过程,对流只能发生在流体内。分为自然对流和强制对流。3 、辐射:一种以电磁波传递能量的现象。热辐射:当物体因热而发岀辐射能的过程。物体在放热时,热能变为辐射能。辐射不仅是能量的转移,而且伴有能量形式的转化。二、传热速率与热阻1、传热速率 1(1) 热流量Q单位时间内通过全部传热面积传递的热量,单位为J s ,即

21、W.传热面积与热流方向垂直。(2) 热通量q:单位时间内通过单位传热面积传递的热量,单位为w m 2.(3) q dQdA2、传热速率与热阻 R的关系传热速率R第二节热传导、傅里叶定律1 、温度场和温度梯度温度场:物体(或空间)各点温度在时空中的分布。t f (x, y, Z, )(t某点的温度, x,y,z点坐标, 时间)不稳定温度场:温度随时间而改变的温度场。稳定温度场:各点温度均不随时间而改变的温度场。温度梯度:两等温面的温度差t与其间的法向距离n之比,某点的温度梯度为n趋于零时的极限值,即n(1)(2)(3)limn 0 n温度梯度是向量,方向垂直于等温面,并以温度增加的方向为正。2

22、、傅里叶定律表达式导热量q与温度梯度 t/ n成正比:qn热导率,单位为 W m 1 K 1或W m 1 C 1。负号表示热流方向与温度梯度的方向相反。、热导率1 、固体纯金属的导热率随温度升高而略有减小;非金属的值随密度的增大或温度的升高而增大。2 、液体非金属液体以水的热导率最大。除水和甘油外,绝大多数的热导率随温度的升高而略有减小。3 、气体气体的热导率随温度的升高而增大。三、平壁的稳定热传导1、单层平壁的稳定热传导(t1t?)Q AqA(t1 t?)bQ二 b/( A) RR无限平壁的导热热阻,R b/( A).2、多层平壁的稳定热传导t1t n 1nRii 1总导热温差总热阻四、圆筒

23、壁的稳定热传导1、无限长单层圆筒壁一维稳态导热(无内热源)t,t2h t2 推动力In亿/口) R 热阻2 It1 t2 t b/ Am Rb 圆筒壁厚度,b 2 1 ; Am平均面积,Am 2 lrm ;2 r1In (a/rj2),扁2)2、无限长多层圆筒壁一维稳态导热(无内热源)t1tn 1bi J 1n叽/斤)总推动力总热阻第三节两流体间的热量传递一、两流体间通过间壁传热的分析牛顿冷却定律:热通量 q与壁面-流体间的温差(tw 给热系数,单位为 W m 2 K 1或W mt)成正比:q (tw t),1、传热速率和给热系数q K(T t)K 传热系数,单位与相同。1、换热管内外面积不相

24、等的考虑K2 q2dA1 d1K1q1dA2 d2传热面积计算的最终结果通常用管外面积表示。2、污垢热阻11 d2d2Rs1 -K 21 drdr3、若污垢热阻与壁阻可忽略时,1b d2d mRsi, Rs2管壁内侧和外侧的污垢热阻)K1(1)若2相差较大时:K1提高较小的(2) 若进而提高K;2相差不大时,三、传热温差和热量衡算Q KA tm_d1 d21 2,则 K12或 K22 K min,d1二者应同时提高。tm为换热器进、岀口处的平均温差tmln( t, t2)t1 / t22)tmt1t1 / t22)四、传热效率-传热单元数法1、传热速率方程:KA tm2、热量衡算方程:传热效率

25、Qms1Cp1 (T1T2)ms2Cp2 (t23、(1)若热流体的msCp较小时,T14、5、(2)若冷流体的mscp较小时,t1上2 XT1 t1传热单元数(1)热流体(2)热流体传热效率NTU1NTST1 T2KAtm七2 Etmms1Cp1KAms2 Cp 2和传热单元数NTU勺关系(1)逆流换热器:1 expNTU(1 Cr)Cr exp NTU (1 Cr)(2)并流换热器:1 exo NTU (1 CR)CR热容量之比,Cr(misCp)min /(m$Cp ) max六、壁温的计算对于稳定传热过程,Q 人厲 Tw)Am(Tw tw)2A2& t) KA tmbA-i, A2,

26、Am 热流体侧传热面积、冷流体侧传热面积和平均传热面积;Tw, tw热流体侧和冷流体侧的壁温;1,2热流体侧和冷流体侧的给热系数。TmTQ1A1Q2 A2第四节给热系数、给热系数的影响因素和数值范围 影响给热的因素:(1)引起对流的原因;(2)流体的流动形态;(3)流体的物理性质;(4)传热面的几何因素;5)流体有无相态变化。二、给热系数与量纲分析 特征数的符号和意义特征数名称符号涵义努塞尔数Nu 表示导热热阻与对流热阻只比雷诺数-lu Re反映流体的流动形态和湍流程度普朗特数r Cp Pr反映与传热有关的流体性质。气体Pr 1,液体Pr 1格拉晓夫数Gr 12g t反映由于温差而引起的自然对

27、流的强度 相对于自然对流时的雷诺数”流体的膨胀系数 1厂c;t流体内的温度差cg t 流体由于温度差而产生的浮升力,N kg 1三、流体做强制对流时的给热系数1 、流体在圆形直管内做强制湍流(1 )当壁温和流体平均温度相差不大时,Nu 0.023 Re08 Prn适用范围:Re 10000, Pr160,管长和管径之比l/d 50定型尺寸I规定为管内径d ;定性温度为流体进、岀口温度的算术平均值。当流体被加热时,n 0.4 ;当流体被冷却时,n 0.3,空气或其他对称双原子气体,Pr 0.7(2)当壁温和流体平均温度相差较大时,0.140.80.33Nu 0.027 Re Pr w应用范围:R

28、e 10000, Pr 16700,l/d 60特征尺寸:管内径定性温度:w取壁温作定性温度,其他物理性质均为流体进、岀口温度的算术平均值。2 、流体在圆形直管内做强制层流Nu 1.86(RePrd)1/3( )0141w适用范围:Re 2300,6700 Pr 0.6,Re Pr(1/d)103 、弯曲管道内的给热系数(11.77d)R圆管、直管中的给热系数; d 管内径,mR 弯管轴的曲率半径, m4 、非圆形直管中的给热系数将管内径改为当量直径 de5 、流体在管外强制对流流体在管束外横向流过时的给热系数:Nu C1C2 Ren Pr0.46 、提高给热系数的途径不论管内或管外,提高流速都能增大给热系数四、流体做自然对流时的给热系数Nu C(Gr Pr)n五、蒸汽冷凝时的给热系数膜状冷凝:当饱和蒸气与低于饱和温度的壁面接触时,蒸汽将放岀潜热并冷凝成液体。若冷凝液能润湿壁面,并形成 一层完整的液膜向下流动,则称为膜状冷凝。滴状冷凝:若冷凝壁面上存在一层油状物质,或者蒸气中混有油类或脂质物质,冷凝液不能润湿壁面,结成滴状小液 滴,从壁面落下,重

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论