




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、等比数列教学设计(精品文档等比数列教学设计(共 2课时)一、教材分析:1、内容简析:本节主要内容是等比数列的概念及通项公式,它是继等差数列后有一个特殊 数列,是研究数列的重要载体,与实际生活有密切的联系,如细胞分裂、银行 贷款问题等都要用等比数列的知识来解决,在研究过程中体现了由特殊到一般 的数学思想、函数思想和方程思想,在高考中占有重要地位。2、教学目标确定:从知识结构来看,本节核心内容是等比数列的概念及通项公式,可从等比数 列的“等比”的特点入手,结合具体的例子来学习等比数列的概念,同时,还要 注意“比”的特性。在学习等比数列的定义的基础上,导出等比数列的通项公式 以及一些常用的性质。从而
2、可以确定如下教学目标(三维目标):第一课时:(1)理解等比数列的概念,掌握等比数列的通项公式及公式的推导(2)在教学过程中渗透方程、函数、特殊到一般等数学思想,提高学生观察、归纳、猜想、证明等逻辑思维能力(3)通过对等比数列通项公式的推导,培养学生发现意识、创新意识第二课时:(1)加深对等比数列概念理解,灵活运用等比数列的定义及通项公式,了解等比中项概念,掌握等比数列的性质(2)运用等比数列的定义及通项公式解决问题,增强学生的应用3、教学重点与难点:第一课时:重点:等比数列的定义及通项公式难点:应用等比数列的定义及通项公式,解决相关简单问题第二课时:重点:等比中项的理解与运用,及等比数列定义及
3、通项公式的应用 难点:灵活应用等比数列的定义及通项公式、性质解决相关问题二、学情分析:从整个中学数学教材体系安排分析,前面已安排了函数知识的学习,以 及等差数列的有关知识的学习,但是对于国际象棋故事中的问题,学生还是不 能解决,存在疑问。本课正是由此入手来引发学生的认知冲突,产生求知的欲 望。而矛盾解决的关键依然依赖于学生原有的认知结构在研究等差数列中 用到的思想方法,于是从几个特殊的对应观察、分析、归纳、概括得出等比数 列的定义及通项公式。高一学生正处于从初中到高中的过度阶段,对数学思想和方法的认识还不 够,思维能力比较欠缺,他们重视具体问题的运算而轻视对问题的抽象分析。 同时,高一阶段又是
4、学生形成良好的思维能力的关键时期。因此,本节教学设 计一方面遵循从特殊到一般的认知规律,另一方面也加强观察、分析、归纳、 概括能力培养。多数学生愿意积极参与,积极思考,表现自我。所以教师可以把尽可能多 的时间、空间让给学生,让学生在参与的过程中,学习的自信心和学习热情等 个性心理品质得到很好的培养。这也体现了教学工作中学生的主体作用。三、教法选择与学法指导:由于等比数列与等差数列仅一字之差,在知识内容上是平行的,可用比较法来学习等比数列的相关知识。在深刻理解等差数列与等比数列的区别与联系的 基础上,牢固掌握数列的相关知识。因此,在教法和学法上可做如下考虑:1、教法:采用问题启发与比较探究式相结
5、合的教学方法教法构思如下:提出问题作用于原来的认知结构引发认知冲突在原有认知的基础上分析观察分析在特殊情况下归纳概括一般情况下得出结论例题和练习总结提高。在 教师的精心组织下,对学生各种能力进行培养,并以促进学生发展,又以学生 的发展带动其学习。同时,它也能促进学生学会如何学习,因而特别有利于培 养学生的探索能力 2、学法指导:学生学习的目的在于学会学习、思考,达到创新的目的,掌握科学有效的学习方法,可增强学生的学习信心,培养其学习兴趣,提高学习效率,从而激发强烈的学习积极性。我考虑从以下几方面来进行学法指导:(1) 把隐含在教材中的思想方法显化。如等比数列通项公式的推导体现了从特殊到一般的方
6、法。其通项公式 an aen 1是以n为字变量 的函数,可利用函数思想来解决数列有关问题。思想方法的显化 对提高学生数学修养有帮助。(2) 注重从科学方法论的高度指导学生的学习。通过提问、分析、解 答、总结,培养学生发现问题、分析问题、解决问题的能力。训 练逻辑思维的严密性和深刻性的目的。四、教学过程设计:第一课时1、创设情境,提出问题 (阅读本章引言并打出幻灯片) 情境1:本章引言内容提出问题:同学们,国王有能力满足发明者的要求吗?引导学生写出各个格子里的麦粒数依次为:1, 2,22,23,24,263(1)收集于网络,如有侵权请联系管理员删除1+ 2 + 22 + 23 +于是发明者要求的
7、麦粒总数是222情境2:某人从银行贷款10000元人民币,年利率为r,若此人一年后还款,二年后还款,三年后还款,还款数额依次满足什么规律?2310000(1+r),10000 (1 r) ,10000 (1 r),(2)情境3:将长度为1米的木棒取其一半,将所得的一半再取其一半,再将所得的木棒继续取其一半,各次取得的木棒长度依次为多少?(3)111248问:你能算出第7次取一半后的长度是多少吗?观察、归纳、猜想得 2、自主探究,找出规律:学生对数列(1),( 2),( 3)分析讨论,发现共同特点:从第二项起, 每一项与前一项的比都等于同一常数。也就是说这些数列从第二项起,每一项 与前一项的比都
8、具有“相等”的特点。于是得到等比数列的定义:般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列。这个常数叫做等比数列的公比,公比常用字母 q (q 0)表示,即 an :an 1 q(n N,n 2,q 0)。1如数列(1),( 2),( 3)都是等比数列,它们的公比依次是2,1+r,点评:等比数列与等差数列仅一字之差,对比知从 第二项起,每一项与前 一项之差”邓数,则为等差数列,之“比”为T数,则为等比数列,此常数称为 “公差”或“公比”。3、观察判断,分析总结:观察以下数列,判断它是否为等比数列,若是,找出公比,若不是,说出理由,然后回答下面问题:
9、1, 3, 9, 27,1111, , , ,2481, -2,4, -8,-1 , -1 , -1 , -1 ,1, 0, 1, 0,思考:公比q能为0吗?为什么?首项能为0吗? 公比q 1是什么数列? q 0数列递增吗? q 0数列递减吗? 等比数列的定义也恰好给出了等比数列的递推关系式: 这一递推式正是我们证明等比数列的重要工具。选题分析;因为等差数列公差 d可以取任意实数,所以学生对公比 q往往忘却它不能取 0和能取1 的特殊情况,以致于在不为具体数字(即为字母运算)时不会讨论以上两种情况,故给岀问题以揭示学生 对公比q有防患意识,问题 是让学生明白q 0时等比数列的单调性不定,而 q
10、 0时数列为摆动数 列,要注意与等差数列的区别。备选题:已知x R则x,x2,x3, xn ,成等比数列的从要条件是什么?4、观察猜想,求通项:方法1:由定义知道 a2 dq,a3 a?q 6q2,a4 a3q q3, 归纳得:等比数列的通项公式为:an agn1( n N)(说明:推得结论的这一方法称为 归纳法,不是公式的证明,要想对 这一方式的结论给出严格的证明,需在学习数学归纳法后完成,现 阶段我们只承认它是正确的就可以了)方法2:迭代法根据等比数列的定义有2an an 1 q an 2 q an 3a2方法3:由递推关系式或定义写出:a2a1a3q,a2a4q,a3q,a丄 q,通过观
11、an 1察发现亚?更?处?a1 a? a3qqann 1n 1 zq ,即:an ag (n N ) a1(此证明方法称为“累商法”,在以后的数列证明中有重要应用)公式an aen 1 (n N )的特征及结构分析:(1) 公式中有四个基本量:a1,n,q,an,可“知三求一”,体现方程思想。(2) a1的下标与的qn1上标之和1 (n 1) n,恰是的下标,即q的指数比 项数少1。5、问题探究:通项公式的应用例、已知数列an是等比数列,a32,a8 64,求的值。4 4备选题:已知数列an满足条件:an p(4)n,且a4。求a8的值5 25&课堂演练:教材138页1、2题5备选题1:已知数
12、列an为等比数列,a1 a310,a4 a6 一,求a4的值4备选题2:公差不为0的等差数列an中,a2,a3,a6依次成等比数列, 则公比等于7、归纳总结:(1)等比数列的定义,即弘qn1(q 0)ai(2)等比数列的通项公式an a1qn 1 (n N )及推导过程。8、课后作业:必作:教材138页练习4;习题1( 2)( 4)2、3、4、5选作:1、已知数列an为等比数列,且a1 a2 a3 7,a1a2a3 8,求an2、已知数列an满足a1 11 2a“ 1(1)求证:an 1是等比数列;。(2)求an的通项an。第二课时1、复习回顾:上节课,我们学习了(打出幻灯片)(1) 等比数列
13、定义:an : an 1 q(n N,n 2,q 0)(2)通项公式:an 6q (n N ,q 0)(3) 若 亘 丄,数列an是等比数列吗? an a1 ()n 1对不对?an 1nn(注意:考虑公比q为常数)2、尝试练习:在等比数列an中(1) a218,a48,求 aq(2) a5 ai 15,a4 a? 6,求 an(3) 在一2与一8之间插入一个数A,使一2, A, 8成等比数列,求A(鼓励学生尝试用不同的方法求解,相互讨论分析不同的解法,然后归纳出等比数 列的性质)3、性质探究:(1) 若a,G,b成等比数列,贝U G2 ab有,称G为a,b的等比中项,即G , ab (a与b同
14、号);思考:a2是谁的等比中项? a3呢? an呢?总结归纳得到性质(2)2(2) an an 1 an 1(n 2)逆向思考:若数列an满足a; an 1 an 1(n 2),它一定是等比数列吗?(3) 若 m n p q,则 am an ap aq(m, n,p, q为正整数)(4) an am qn m(n f m, n,m N )4、灵活运用:下面我们来看应用等比数列性质可以解决那些问题。例1、在等比数列an中,a3 a5100,求a变式1、等比数列an中,若a2 2,a6 162,则变式2、等比数列 an中,若a7 312 5,则as ag aw an变式3、等比数列an中,若a1a
15、2a37a?a38,则a.=例2、已知数列an , bn是项数相同的等比数列,求证:an bn是等比数列。变式1、已知数列an , bn是项数相同的等比数列,问数列 an bn是等比数列吗?变式2、已知数列an是等比数列,若取出所有偶数项组成一个新数列,此数列还是等比数列吗?若是,它的首项和公比分别为多少?变式3、已知数列an是等比数列,若取出310,320,330,组成一个新数列,此数列 还是等比数列吗?若是,它的首项和公比分别为多少?变式4、已知数列an是等比数列,若每一项乘以非零常数 C组成一个新数列,此 数列还是等比数列吗?若是,它的首项和公比分别为多少?(通过上述问题的讨论求解,归纳、总结、推广得出等比数列的一些性质)例3、三个数成等比数列,它们的和为 14,它们的积为64,求这三个数。备选题、有四个数,前三个数成等比数列,其和为19,后三个数成等差数列,其和为12,求这四个数。5、课堂演练:教材138页3、4、5备选题:已知数列 an为等比数列,且an f 0, a2a4 2a3a5 a4a6 25则a3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 知识迁移与应用能力提升计划
- 个人知识体系建设的必要性计划
- 2025年网络技术前景分析试题与答案
- 城市交通环境影响评价重点基础知识点
- 2024年盘锦市盘山县项目建设服务中心遴选真题
- 法律文书的格式与写作试题及答案
- 2024年龙岩市永定区招聘中小学幼儿园教师真题
- 全面提升仓库操作规范计划
- 2024年湖南省应急管理厅下属事业单位真题
- 秋季学生访谈与调研计划
- 六年级下册数学课件 整理和复习6.5比和比例 人教版 (共14张PPT)
- 福州市历史建筑保护管理办法(试行)
- JHA及SCL风险评价方法讲解(参考)
- DB11T 1933-2021 人乳库建立与运行规范
- 1.3.1动量守恒定律课件(共13张PPT)
- 国网北京市电力公司授权委托书(用电)
- 中小学教育惩戒规则(试行)全文解读ppt课件
- 调度指挥与统计分析课程教学设计
- 常暗之厢(7规则-简体修正)
- 终端塔基础预偏值(抬高值)计算表格
- 海外医疗服务委托合同协议书范本模板
评论
0/150
提交评论