




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、“最小二乘法求线性回归方程”教学设计最小二乘法求线性回归方程 教学设计 一.内容和内容解析 本 节课的主要内容为用最小二乘法求线性回归方程。本节课内容作为上节课线性回归方程探究的知识发展,在知识上有很强的联 系,所以,核心概念还是回归直线。在经历用不同估算方法描述两个变量线性相关关系的过程后,解决好用数学方法刻画从整体上看,各点与此直线的距 离最小,让学生在此基础上了解更为科学的数据处理方式最小二乘法, 有 助于更好的理解核心概念,并最终体现回归方法的应用价值。就统计学科而言, 对不同的数据处理方法进行优劣评价 是假 设检验 的萌芽,而后者是统计学学科研究的另一重要领域。了解最小二乘法思想,比
2、较各种估算方法,体会它的相对 科学性,既是统计学教学发展的需要, 又 在体会此思想的过程中 促进了学生对核心概念的进一步理解。最小二乘法思想作为本节课的核心思想,由此得以体现。而回归思想和贯穿统计学科中的随机思想,也在本节课中需有所渗透。所以,在内容重点的侧重上, 本节课与上节课有较大的 区别:上节课侧重于估算方法设计,在不同的数据处理过程中,体会回归直线作为变量相关关系代表这一概念特征;本节课侧重于估 算方法评价与实际应用,在评价中使学生体会核心思想,理解核心 概念。考虑到本节课的教学侧重点与新课程标准的要求,对线性回归方程系数的计 算公式,可直接给出。由于公式的复杂性, 一方面,既要通过教
3、学设计合理体现 知 识发生过程,不搞割裂;另一方面,要充分利用计算机或计算器, 简化繁 琐的求解系数过程, 简化过于形式化的证明说理过程。基于上述内容分析, 确定本节课的教学重点为知道最小 二乘法思想,并能根据给出的线性回归方程的系数公式建立线性回 归方程。二.目标和目 标解析 本节课要求学生了解最小二乘法 思想,掌握根据给出的线性回归方程系数公 式建立线性回归方程, 理解线性回归方程概念和回归思想, 在以上过程中体会随机思想:1 .能用数学符号刻画出从整体上看,各点与此直线的点的偏差 的表达方式;2 .通过减少样本点个数, 经历对表达式的展 开,把偏差最小 简化为二次 多项式 最小值问题,通
4、过合情推理, 使学生接受最小二乘法的科学性,在此过 程中了解最小二乘法思想;3 .能结合具体案例, 经历数据处理步骤, 根据回归方程系 数公式建立回归方程;4.通过改变同一问题下样本点的选择进而 对照回归方程的差异, 体会随机思想;5 .利用回归方程预测,体 现用确定关系研究相关关系的回归思想; 三.教学目标分析在学生现在经历用不同估算方法描述两个变量线性相关的过程后, 有知识能力范围内,如何选择一个最优方法,成为知识发展的逻 辑必然。最小二乘法 作为经典的回归方程估算方法:通过用数学方法刻画从整体上看,各点与此直线的距离最小 这一直观的几何描述, 并采取合适的数学处 理方法,最终获得回 归直
5、线,对学生认可统计估算的科学性有很大的帮助。基于此,如何把从整体上看,各点与此直线的距离最小 用 合适的代数符 号刻画并化简, 化几何问题为代数问题, 是顺利了 解最小二乘法 思想的前提; 而如何化简复杂的代数表达式, 学生 缺乏处理的经验, 在计算能力的要求上也较 高。要了解最小二乘法思想,接受由系数公式得到的线性方程 为 回归方程,理解此方程可作为两个具有线性相关关系变量的代表这 一回归直线概念本 质,并体现相对于其他估算方法的优越性,又必须要求对给出的系数公式来源进 行一定的说理。知识发展的要求与学生能力和经验的欠缺成为本节课将会遇到的最大矛盾。教学中,要防止两种倾向:一是直接套用回归系
6、数公式求解回归方程而回避说理 过程; 二是过多纠缠于数学刻画过程, 甚至在课堂内花大量时间对回归系 数公式进行证明说理。这两种倾向, 都脱离了实际情况,前者忽略了最小二乘法思想, 迷失了本节课的教学目标;后者人为拔高教材要求, 脱离了本节课教学要求。所以,本节课的教学难点是:如何通过数学方法刻画从整体上看,各点与此直线的距离最小并在此过程中了解最小二乘法思想。通过降次举特例说明,进行合情推理是学生突破此难点的一个方法。四. 教学用具分析 本节课需要运用回归系数公式求解回归直 线,此过程要进行大量的运算, 需 要科学计算器减少繁琐的计算。在后续例题的解决过程中,还需借助Excle软件,通过大量
7、的回归直线比较分析, 体会回归思想和随机思想, 因此需要多媒体 电脑展示设备支持。五. 教学过程设计1 .课题引入问题1 :(投影上节课探究结果)如何评价这些直线的优劣? 理由呢? 问题2 :能否从几何直观角度用文字语言叙述你的理由?问题3 :从整体上看,各点与此直线的距离最小 中,距离等于偏差 吗?作为判断优劣的标准,可以等同吗?设计意图:在上节课计算预测值与实际值偏差 的经验基础上,通过学生 对从整体上看,各点与此直线的点的距离的最小 这一新标准与旧经 验的冲突 和联系,对优劣问题 展开反思:从旧经验单个点 到新标准所有点, 突出整体 二字;从旧 经验偏差计算到新标准点线距离,对比几何描述
8、直观性和代数表 达便捷性, 揭示出两者是同一标准的不同表述。师生活动:在上节课铺垫的基础上, 学生不难回想到上节课比较不同回归 直线 优劣的方法通过计算样本点与直线对应点纵坐标差比较偏差。在此铺 垫基础上,教师可结合图形,用代数符号yi、标记, 为下一步代数表达做好准备。第二问更具有几何直观性,学生也易于接受此标准,达成几何 与代 数 的转化、距离 与偏差 的转化。若学生对距离 与偏差 有疑问, 教师可提出问题3,通过观 察课本92页图2. 3-6,简单介绍偏差处理法的优越 性和等价性 即可。2 .知识发展 设回归直线方程为,(xi , yi )表示第i个 样本点,问题1 :你能用代数式来刻画
9、从整体上看,各点与此直线的偏差最小吗? 问题2 :偏差有正有负,我们可以怎么规避?比较绝对值处理和平方处理,我们 选择哪种合适?设计意图:几何问题代数化, 为下一步探究作好准备, 经历几何直观 转 化为代数表达过程,体验最小二乘法思想。师生活动:在引入的设问中, 已经解决了转化的问题, 由于上节课学生 有用具体数据来计算偏差的经验,学生易于抽象出各点偏差表示 式 yi -i =yi -(bxi+a )(i=1 , 2 , n ),进而不难得出:Q= (y1 bx1 a) + (y2 bx2 a) + (yn bxn a)。问题2可在投影屏上举极端例子说明,学生会发现此处理方 法的局限性, 学生
10、可能会提出多种方法, 教师肯定其观点, 说明 去绝对值对后续研究不便, 可类比 方 差 处理方式,采用平方处 理方法,教师投影:问题3 :从代数上说, 偏差最小既哪个量最小? 当样本点的坐标(xi , yi )确定时,上述表达式可否化为关于a、b的二次式呢? 设 计意图:体会最小二乘法思想, 不经历公式化简无法真正理解, 而直 接从n个点的公式化简, 教学要求、 教学时间、学生能力都没达 到这个高度。而由具 体到抽象,由特殊到一般, 是学生顺利完成认知过程 的一般性原则。通过此问,让学生了解化简的结果,在此过程中,既熟悉 了新符号, 又通过观察展开式,能 唤起学生已有认知结构中关于处理带参数的
11、二次多项式最小值问题的数学处理方法,揭示n个点的代数式本质也是关于a、b的二次多项式,从而了解最小二乘 法思想,突破教学难点。师生活动:教师指出:可采用n 个偏差的平方和 Q= (y1 bx1 a)2+(yn bxn a)2+ (y2 bx2 a) 2表示n个点与相应直线在整体上的接近程度:记Q=(向学生说明的意义)。在此基础上, 给出可求出使Q为最小值时的a、b的值的 线性回归方程系数公式:问题4 :这个公式不要求记忆,但要会运用这个公式进行运算,那么,要求a, b 的值,你会按怎样的顺序求呢?设计意图:公式不要求推导, 又不要求记忆,学生对这个公式缺少感性的认 识,通过这个问题,使学生从感
12、性的层次上对公式有所了解。师生活动:由于这个公式比较复杂,因此在运用这个公式求a, b时,必须要 有条理, 先求什么,再求什么,比如, 我们可以按照顺序来求,再代入公式。问题5 :回归直线通过样本点中心,观察此公式, 比照平均数与样本数据之间的 关系,你能发现回归直线方程如何体现这点?设计意图:在不确定问题探讨中出现的确定性性质,比较有戏剧性,能 再次 激发学生的探究欲望, 而此问题的探究, 使得学生在回归直 线是两个变量具有 相关关系的代表 的理解上, 上升到回归直线是 双变量样本点的中心 这一高 度,深化对回归直线和回归思想的理 解,完成学生认知结构的再次建构。3 .知识深化:问题1 :观
13、察公式,根据表一数据, 需要计算哪些新数据, 才能求出 线性回归方 程系数?计算量大不大? 我们用计算器来代替这重复 的劳动,请大家一起跟我来操作(计算器操作流程可打印在学案 上)。人体的脂肪百分比和年龄 表一:年龄 23 39 45 50 54 57 60 脂肪 9 . 5 21. 2 27. 5 28. 230. 2 30 . 8 35 . 2 设计意图:公式形式化程度高、表达复杂, 通过分解,可加深对公式结构的理解。同时,通过例题, 反映数据处理的繁杂性,体现计算器处理的优越性。师生活动:可让学生观察公式,充分讨论, 得出要计算:n 、五个新数据。而后教师可偕同学生,对计算器操作方式提供
14、示范,师 生共同完成问题2 :利用计算器,根据表二,请同学们独立解决求出表中两变量的回归方程:表二:年龄 27 41 49 53 56 58 61 脂肪 17 . 8 25. 9 26. 3 29. 631. 4 33 . 5 34 . 6师生活动:教师利用Excle软件,示范操作,并适时给出回归直线答案, 检测正确与否。年龄 23 39 45 50 54 57 60 脂肪 9 . 5 21. 2 27. 5 28. 230. 2 30 . 8 35 . 2回归直线为:y=0. 6541X-4. 5659 年龄 27 41 49 53 56 58 61 脂肪 17 . 825. 9 26 .
15、3 29 . 6 31 . 4 33 . 5 34 . 6 回归直线为:y=0. 4767X+4. 9476师生活动:教师利用Excle软件,合并表中数据,求出此时的回归直线, 比较回归直线异同。问题3 :同样问题背景, 为什么回归直线不止一条?回归方程求出后,变量间的 相关关系是否就转变成确定关系?问题4 :若给出的样本数据相关程度较弱,按照公式能否求出系数a、b?此时 的直线方程是回归直线吗?设计意图:明确样本点的选择影响回归直线方程,体现统计的随机思想。同 时,明确其揭示的是相关关系而非函数的确定关系, 而且 最小二乘法只是某一标准下的一种数据处理方法,使学生更全面的 理解回归直线这一核心概念。在重复 求解回归直线的过程中,使学生掌握利用计算器求回归直线的操作方法,了解计 算机处理方法。六.目标检测设计1、下表是某小卖部6天卖出热茶的杯 数与当天气温的对比表(用计算器直 接求回归直线):气温 / C 26 18 13 10 4 1 杯数 20 24
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合肥市烟草公司2025秋招客户经理岗位面试模拟题及答案
- 中国邮政2025拉萨市秋招金融业务类岗位面试模拟题及答案
- 2025医疗器械出口进口合同
- 云浮市烟草公司2025秋招客户经理岗位高频笔试题库含答案
- 2025年货物运输双方协议书
- 2025年度科技创新项目招投标与合同执行监管服务协议
- 中国邮政2025沧州市秋招网络安全岗位面试模拟题及答案
- 北京市住建委租赁合同3篇
- 2025版房产交易中介服务合同书版B版
- 2025年虚拟现实产业投资战略合同
- 热固复合聚苯乙烯防火保温板应用技术规程(征求意见稿)
- 线性代数精第一章第一节课件
- 计算机系统原理13015习题答案
- 动物病料的采集运输保存
- 创意设计垃圾桶
- 截肢患者康复护理
- 应用统计基础与实务-教学课件-作者-宋文光-宫颖华-项目一
- 《维生素及图片》课件
- 天然气开采业的生产流程与技术要点
- 超市改造方案
- 国企清产核资制度
评论
0/150
提交评论