温度测量系统设计_第1页
温度测量系统设计_第2页
温度测量系统设计_第3页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、电子信息工程电子专业基础课程设计研究报告温度测量系统设计学生姓名:XXX学生学号:XXXXXXXXXX指导教师:XXX所在学院:信息技术学院专业班级:电子班暑龍弘八一成灾术辱中国大庆2011 年 11 月信息技术学院课程设计任务书信息技术 院电子信息工程 专业 08 级,学号 XXXXXXXXX姓名XXX一、课程设计课题:温度测量系统设计二、 课程设计工作日自2011 年 10月 31 日至 2011 年11月18日三、课程设计进行地点:信息技术学院205四、课程设计任务要求:(详细内容见课程设计文档)1. 课题来源:老师派发题目2. 目的意义:随着社会的进步和工业技术的发展,人们越来越重视温

2、度因 素,许多产品对温度范围要求严格,而目前市场上普遍存在的温度检测仪 器大都存在精度不够的缺点,不利于工业控制者根据温度变化及时做出决 定。实时性高、精度高,能够综合处理多点温度信息的测量系统就很有必 要。3. 基本要求:1) 采用单片机80C51.要求温度范围0C 100 C之间。2) 温度传感器选用模拟的数字的都可以。3) 在LED中显示温度。4) 精度达到土 1%。5) 分辨率0.1 T6) 根据精度自选A/D转换芯片。7) 直流稳压电源自行设计。8) 辅助电路及元器件自选。课程设计评审表指导教师评语:成绩:签字:日期:目录1设计任务要求12方案比较13单元电路设计 .24软件的编程1

3、0总结与体会.11致谢 .12参考文献 .13附录.141、设计任务要求1) 采用单片机80C51.要求温度范围0 C 100 C之间2) 温度传感器选用模拟的数字的都可以。3) 在LED中显示温度。4) 精度达到土 1%。5) 分辨率0.1 C6) 根据精度自选A/D转换芯片。7) 直流稳压电源自行设计。8) 辅助电路及元器件自选。2、方案比较方案一、采用模拟分立元件,如电容、电感或晶体管等非线形元件,实现多点温 度的测量及显示,该方案设计电路简单易懂,操作简单,且价格便宜,但采用分 立元件分散性大,不便于集成数字化,而且测量误差大。采用模拟的温度传感器 实现温度的测量方案二、本方案采用AT

4、89S51单片机为核心,通过温度传感器 AD590采集温 度信号,经信号放大器放大后,送到 A/D转换芯片,最终经单片机检测处理温度信号。AD单LEDifN)1 机G V示1/图1方案二的框图方案三、本方案由AT89S51单片机为核心,温度传感器采用的是 DS18B20数 字温度传感器实现温度的测量并且由 LED显示温度值。DS18B20AT89S51单片机LED显示图2 方案三框图方案的比较:DS18B20将温度信号直接转换为数字信号,实现了与单片机的直接接口,从而省去了信号调理电路。该元件的最大分辨率为0.0625 C能达到设计要求。该仪器电路简单、功能可靠、测量效率高,很好地弥补了传统温

5、度 测量方法的不足。相对与方案1,在功能、性能、可操作性等方面都有较大的提 升。相对与方案2,硬件电路简单,易于操作,具有更高的性价比,更大的市场。 所以我采用方案3完成本设计。3、单元电路设计3.1控制电路单片机电路及原理At89S51是美国ATMEL公司生产的低电压、高性能 CM0S8位单片机; 片内含有4k字节的可反复擦写的只读程序存储器(PEROM )和128字节的随 机存取数据存储器(RAM);器件采用AMTEL公司的高密度、非易失性存储技 术生产,兼容标准MCS-51指令系统;片内置通用2位中央处理器(CPU )和 Flash存储单元,功能强大的AT89C51单片机可为您提供许多高

6、性价比的应用 场合,可灵活应用于各种控制领域。功能特性概述AT89S51提供以下标准功能:4k字节Flash闪速存储器、128字节内部RAM、 32个I/O 口线、两个16位定时/计数器、1个5向量两级中断结构、一个全双 工串行通信口、片内振荡器及时钟电路,同时, AT89S51可降至OHz的静态逻 辑操作并支持两种软件可选的节电工作模式;空闲方式停止CPU的工作,但允许RAM、定时/计数器、串行通信口及中断系统继续工作;掉电方式保存RAM中的内容,但振荡器停止工作并禁止其它所有部件工作一直到下个硬件复位。引脚功能说明Vcc :电源电压GND : 地P0 口: P0 口是一组8位漏极开路型双向

7、I/O 口,也即地址/数据总线复用 口;作为输出口用时,每位能吸收电流的方式驱动 8个TTL逻辑门电路,对端 口写“T可作为高阻抗输入端用。在访问外部数据存储器或者程序存储器时,这组口线分时转换地址(低8位)和数据总线复用;在访问期间激活内部上拉电阻。在Flash编程时,P0 口接收指令字节,而在程序校验时,输出指令字节, 校验时要求外接上拉电阻P1 口: P1是一个带内部上拉电阻的8位双向I/O 口; P1的输出缓冲级可 驱动(吸收或输出电流)4个TTL逻辑门电路,对端口写“ 1 ”,通过内部的上拉 电阻把端口拉到高电平,此时可作输入口;作输入口使用时,因为内部存在上拉 电阻,某个引脚被外部

8、信号拉低会输出一个电流。Flash编程和程序校验期间,P1接收低8位地址P2 口: P2 口是一个带有内部上拉电阻的 8位双向I/O 口; P2的输出缓冲 级可驱动个(吸收或输出电流)4个TTL逻辑门电路,对端口写“ 1 ”,通过内部 的上拉电阻把端口拉到高电平,此时可作输入口;作输入口使用时,因为内部存 在上拉电阻,某个引脚被外部信号拉低会输出一个电流。在访问外部程序存储器或16位地址的外部数据存储器(例如执行 MOVX DPTR指令)时,P2 口送出高8位地址数据;在访问8位地址的外部数据存 储器(如执行MOVX RI )时,P2 口线上的内容(即特殊功能寄存器(SFR)区 中的R2寄存器

9、的内容),在整个访问期间不改变;Flash编程或校验时,P2亦接收高位地址和其它控制信号。P3 口: P3 口是一个带有内部上拉电阻的 8位双向I/O 口; P2的输出缓冲 级可驱动个(吸收或输出电流)4个TTL逻辑门电路,对端口写“ 1 ”,通过内部 的上拉电阻把端口拉到高电平,此时可作输入口;作输入口使用时,因为内部存 在上拉电阻,某个引脚被外部信号拉低会输出一个电流。P3 口除了作为一般的I/O 口线外,更重要的用途是它的第二功能;如下表2-1所示:表2-1端口引脚第二功能P3.0RXD (串行输入口)P3.1TXD (串行输出口)P3.2INT 0(外中断0)P3.3INT1(外中断1

10、)P3.4T0 (定时/计数器0)P3.5T1(定时/计数器1)P3.6WR (外部数据存储器写选通)P3.7RD (外部数据存储器读选通)P3 口还接收一些用于Flash闪速存储器编程和程序校验的控制信号RST:复位输入;当振荡器工作时,RST引脚出现两个机器周期以上高电平 将使单片机复位ALE/PROG :当访问外部程序存储器或数据存储器时,ALE (地址锁存允许) 输出脉冲用于锁存地址的低8位字节;即使不访问外部存储器,ALE仍以时钟振 荡频率的1/6输出固定的正脉冲信号,因此它可对外输出时钟或用于定时目的; 要注意的是,每当访问外部数据存储器时将跳过一个 ALE脉冲。如有必要,可通过对

11、特殊功能寄存器(SFR)区中的8EH单元的DO位置位, 可禁止ALE操作,该位置位后,只有一条 MOVX和MOVC指令ALE才会被激 活,此外该引脚会被微弱拉高,单片机执行外部程序时,应该置 ALE无效。EA/VPP :外部访问允许;欲使CPU仅访问外部程学存储器(地址为0000H FFFFH), EA端必须保持低电平(接地)。需要注意的是,如果加密位 LB1被编 程,复位时内部会锁存EA端的状态3 o如EA端为高电平(接Vcc端),CPU则执行内部程序存储器中的指令。Flash存储编程时,该引脚加上+12V的编程允许电源Vpp,当然这必须是 该器件是使用12V编程电压Vpp oXTML1 :

12、振荡器反相放大器的及内部时钟发生器的输入端。XTML2:振荡器反相放大器的输出端。图3单片机的工作电路图复位电路复位电路的用途:单片机复位电路就好比电脑的重启部分,当电脑在使用中出现死机,按下重启按钮电脑内部的程序从头开始执行。单片机也一样,当单片机系统在运行中,受到环境干扰出现程序跑飞的时候,按下复位按钮内部的程序 自动从头开始执行。复位电路的工作原理:51单片机要复位只需要在第9引脚接个高电平持续 2us就可以实现在单片机系统中,系统上电启动的时候复位一次,当按键按下的 时候系统再次复位,如果释放后再按下,系统还会复位。所以可以通过按键的断 开和闭合在运行的系统中控制其复位。电路图如下:图

13、4复位电路晶振电路晶体振荡器,简称晶振。在电气上它可以等效成一个电容和一个电阻并联再 串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其 中较低的频率是串联谐振,较高的频率是并联谐振。由于晶体自身的特性致使这 两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感, 所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大, 这个振荡器的频率也不会有 很大的变化。晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并 联电容

14、,就可以得到晶振标称的谐振频率。一般的晶振的负载电容为15p或12.5p,如果再考虑元件引脚的等效输 入电容,则两个22p的电容构成晶振的振荡电路就是比较好的选择。晶体振荡器也分为无源晶振和有源晶振两种类型。无源晶振与有源晶振(谐振)的英文名称不同,无源晶振为crystal (晶体),而有源晶振则叫做 oscillator (振荡器)。无源晶振需要借助于时钟电路才能产生振荡信号,自身 无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振是一个完整的谐 振振荡器。谐振振荡器包括石英(或其晶体材料)晶体谐振器,陶瓷谐振器,LC谐振器等。在本次课程设计中使用的是无源晶振电路图如下示:图5晶振电路

15、3.2直流电源在本次的课程设计中采用的是自主设计的直流电源主要是通过变压器进行降压,用二极管整流桥进行整流操作,用稳压芯片对电源实现稳压。在正常的工作情况下输入 220V交流电经过整流二极管进行整流使用电桥实现全波整流经过4700uf大电容的滤波得到较低的直流电压,经过LM7812把直流电压稳压为12V,然后在经过直流稳压芯片 LM7805得到了单片机稳定的工作电压。如下图示:图6自制直流电源3.3测温电路在本次的课程设计中使用的是的 DS18B20数字式温度传感器。DS18B20型 单线智能温度传感器,属于新一代适配微处理器的智能温度传感器。 全部传感元 件及转换电路集成在形如一只三极管的集

16、成电路内。与传统的热敏电阻相比,它 能够直接读出被测温度,并且可根据实际要求通过简单的编程实现 912位的数 字值读数方式。其可以分别93 . 75ms和750ms内完成9位和12位的数字量,最 大分辨率为0. 0625 C , 而且从DS18B20读出或写入DS18B20的信息仅需要 一根口线(单线接口)读写。3.3.1 DS18B20 的性能特点单线数字化智能集成温度的传感器,其特点是: DSI8B20可将被测温度直接转换成计算机能识别的数字信号输出,温度值不 需要经电桥电路先获取电压模拟量,再经信号放大和 A/D转换成数字信号, 解决了传统温度传感器存在的因参数不一致性,在更换传感器时会

17、因放大器 零漂而必须对电路进行重新调试的问题,使用方便. DS18B20能提供9到12位温度读数,精度高,且其信息传输只需1根信号线, 与计算机接口十分简便,读写及温度变换的功率来自于数据线而不需额外的 电源. 每一个DS18B20都有一个惟一的序列号,这就允许多个 DS18B20连接到同 一总线上.尤其适合于多点温度检测系统. 负压特性:当电源极性接反时,DS18B20虽然不能正常工作,但不会因发热而烧毁 正是由于具有以上特点,DS18B20在解决各种误差、可靠性和实现系 统优化等方面与传统各种温度传感器相比,有无可比拟的优越性,因而广泛应用于过程控制、环境控制、建筑物、机器设备中的温度检测

18、。3.3.2 DS18B20 与单片机的典型接口设计DS18B20测温系统具有测温系统简单、测温精度高、连接方便、占用口线 少等优点。DSI8B20与单片机的硬件连接有两种方法:一是Vcc接外部电源,GND 接地,1/0与单片机的I/O线相连;二是用寄生电源供电,此时,UDD和GND接 地,I/O接单片机I/O。无论是哪种供电方式,I/O 口线都要接4 . 7k Q左右的上拉 电阻。图4给出了 DSI8B20与微处理器的典型连接。 DS18B20寄生电源供电方式:如下面图3.2(a)所示,在寄生电源供电方式下,DS18B20从单线信号线上汲 取能量:在信号线DQ处于高电平期间把能量储存在内部电

19、容里,在信号线处于 低电平期间消耗电容上的电能工作,直到高电平到来再给寄生电源(电容)充电。独特的寄生电源方式有三个好处:1) 进行远距离测温时,无需本地电源2) 可以在没有常规电源的条件下读取 ROM3) 电路更加简洁,仅用一根I/O 口实现测温要想使DS18B20进行精确的温度转换,I/O线必须保证在温度转换期间提 供足够的能量,由于每个DS18B20在温度转换期间工作电流达到1mA,当几个 温度传感器挂在同一根I/O线上进行多点测温时,只靠4.7K上拉电阻就无法提供 足够的能量,会造成无法转换温度或温度误差极大。因此,该电路只适应于单一温度传感器测温情况下使用,不适宜采用电池供电系统中。

20、并且工作电源VCC必须保证在5V,当电源电压下降时,寄生电源能 够汲取的能量也降低,会使温度误差变大。 DS18B20寄生电源强上拉供电方式:改进的寄生电源供电方式如下面图 3.2(b)所示,为了使DS18B20在动态转 换周期中获得足够的电流供应,当进行温度转换或拷贝到 E2存储器操作时,用 MOSFET把I/O线直接拉到VCC就可提供足够的电流,在发出任何涉及到拷贝 到E2存储器或启动温度转换的指令后,必须在最多 10必内把I/O线转换到强 上拉状态。在强上拉方式下可以解决电流供应不走的问题, 因此也适合于多点测 温应用,缺点就是要多占用一根I/O 口线进行强上拉切换。 DS18B20的外

21、部电源供电方式:如下面图3.2(c)所示,在外部电源供电方式下,DS18B20工作电源由VDD引 脚接入,其VDD端用35. 5V电源供电,此时I/O线不需要强上拉,不存在电 源电流不足的问题,可以保证转换精度,同时在总线上理论可以挂接任意多个 DS18B20传感器,组成多点测温系统。注意:在外部供电的方式下,DS18B20的GND引脚不能悬空,否则不能转换温度,读取的温度总是 85 C。图7温度传感器电路3.4显示电路该显示电路是采用7段LED数码管显示温度。电路图如下:主要的工作原理:7段数码管又分共阴和共阳两种显示方式如果把7段数abcdefg 这 7码管的每一段都等效成发光二极管的正负

22、两个极,那共阴就是把 个发光二极管的负极连接在一起并接地;共阳是把所有的二极管的正极连接在一 起。如果7段数码管是共阳显示电路,那就需要选用驱动电路。共阳就是把abcdefg的7个发光二极管的正极连接在一起并接到 5V电源上,其余的7个负极接到单片机相应的10 口。无论共阴共阳7段显示电路,都需要加限流电阻, 否则通电后就把7段译码管烧坏了!限流电阻的选取是:5V电源电压减去发光 二极管的工作电压除上10ma到15ma得数即为限流电阻的值。发光二极管的 工作电压一般在1.8V-2.2V,为计算方便,通常选2V即可!发光二极管的工作 电流选取在10-20ma,电流选小了,7段数码管不太亮,选大了

23、工作时间长了 发光管易烧坏!对于大功率7段数码管可根据实际情况来选取限流电阻及电阻的 瓦数!El. El. El, El.图8 LED显示电路4、软件的编程在本课程设计中使用Keil C51开发软件,该软件是美国Keil Software公司 出品的51系列兼容单片机C语言软件开发系统,与汇编相比,C语言在功能上、 结构性、可读性、可维护性上有明显的优势,因而易学易用。用过汇编语言后再 使用C来开发,体会更加深刻。Keil C51软件提供丰富的库函数和功能强大的集成开发调试工具,全Windows界面。另外重要的一点,只要看一下编译后生成的汇编代码,就能体 会到Keil C51生成的目标代码效率

24、非常之高,多数语句生成的汇编代码很紧凑, 容易理解。在开发大型软件时更能体现高级语言的优势。该课程设计中主要利用了 DS18B20芯片进行测温,该芯片是单总线器件, 顾名思义单总线只有一根数据线,因此在通信时时序就显得十分重要,我们在编 程时也要十分注意这一点。在程序中测温时首先要对DS18B20进行初始化,初始化过程由单片机发出的复位脉冲和芯片响应的应答脉冲组成,应答脉冲使主机知道,总线上有从机设备,且准备就绪。由于总线上只挂接了一片测温芯片,因 此可直接跳过ROM匹配发出测温命令。该设计可实时显示温度值,便于连续观 测。系统源程序见附录。软件流程图如下所示: 标准图9程序设计流程图总结与体

25、会在本次课程设计中使用的是数字温度传感器 DS18B20。通过调试成型系统 发现了 DS18B20除了上述优点外,还有一些缺点,如:简单的硬件连接的代价 是复杂的软件时序,DS18B20在测量温度的时候,灵敏度不够高,温度快速变 化时无法迅速显示出其变化。通过一系列的实验发现:由DS18B20构建的测温小系统适用于环境温度监控,对温度小变化较敏感;不适合应用于要求实时性强、 温度跨度大的测温方式。在显示电路中采用的数码管的显示方式,虽然操作简单但是在代码书写时要 注意在字型码这块要区分好是共阳极还是共阴极的数码管。本文中采用动态扫描 的方式控制共阳极的数码管。在按键的处理时使用的是软件消抖,

26、要注意延长时 间的把握。在本次的课程设计中了解了很多知识并且为毕业设计的书写锻炼了自 己。致谢这次课程设计使我掌握了很多实践知识,在老师和同学的帮助下对单片机有 了进一步的了解。通过这次课程设计使我懂得了理论与实际相结合是很重要的, 只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来, 从理论 中得出结论,进而提高自己的实际动手能力和独立思考的能力。 整个设计过程可 以说不是很顺利,因为有很多知识已经淡忘,还有很多新的东西没有掌握,所以 这次设计在不断的复习、学习中度过,使我受益匪浅,也使我对单片机的运用有最后我要了进一步的了解和掌握,也为今后的学习生活和工作打下良好的基础。 衷心

27、感谢帮助我的同学。参考文献1 李朝青.单片机原理及接口技术(修订版)北京:北京航空航天大学出版社,19982 李广弟.单片机基础.北京:北京航空航天大学出版社,19923 何立民.单片机应用技术大全北京:北京航空航天大学出版社,19944 张毅刚.单片原理及接口技术哈尔滨:哈尔滨工业大学出版社,1990 谭浩强.单片机课程设计.北京:清华大学出版社,19896 马家辰.MCS-51单片机原理及接口技术哈尔滨:哈尔滨工业大学出版社19977 康华光.数字电子技术.第四版.北京:高等教育出版社,19988 OMAC Baseline Architecture Functional Requirem

28、ent. Version1 . 0. WWW . arcweb . com .9 付家才.单片机测控工程实践技术.北京:化学工业出版社,200110 李广弟单片机基础(修订本).北京:北京航空航天大学出版社,200111诸昌铃丄ED显示屏系统原理及工程技术西安:西安电子科技大学出版社,2000.912 Astrom, Karl J. (Karl Johan).Computer-controlledsystems: theoryand design. Beijing: Tsinghua University Press, 2002.213 沈红卫单片机应用系统设计实例与分析北京:北京航空航天大学

29、出版社,2003附录附录电路图j丄1I Fi n in. nDDT J0;t-);/*显示扫描函数*/sea n()char k;for(k=0;k0; i-) /DQ=1;_nop_();_nop_();DQ = 0;_nop_();_nop_();_nop_();_nop_();_nop_();/5usDQ = val&0x01; delay(6); val=val/2;DQ = 1;delay(1);/最低位移出66us/右移一位18B20读1个字节函数*/从总线上读取一个字节 uchar read_byte(void)uchar i;uchar value = 0;for (i=8;i0;i-)DQ=1;_nop_();_nop_();value=1;DQ = 0;/_nop_();_nop_();_nop_();_nop_();4us/4usDQ = 1;_nop_();_nop_();_nop_();_nop_(); if(DQ)value|=0x80;dela y(6);66usDQ=1;return(value);/读出温度函数*/ read_t

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论