

下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数学教案梯形的中位线 教学建议 知识结构 重难点分析 本节的重点是中位线定理.三角形中位线定理和梯形中位线定理不但给出了三角形或梯形中线段的位置关系,而且给出了线段的数量关系,为平面几何中证明线段平行和线段相等提供了新的思路. 本节的难点是中位线定理的证明.中位线定理的证明教材中采用了同一法,同一法学生初次接触,思维上不容易理解,而其他证明方法都需要添加2条或2条以上的辅助线,添加的目的性和必要性,同以前遇到的情况对比有一定的难度. 教法建议 1对于中位线定理的引入和证明可采用发现法,由学生自己观察、猜想、测量、论证,实际掌握效果比应用讲授法应好些,教师可根据学生情况参考采用 2对于定理的证明
2、,有条件的教师可考虑利用多媒体课件来进行演示知识的形成及证明过程,效果可能会更直接更易于理解 教学设计示例 一、教学目标 1掌握梯形中位线的概念和梯形中位线定理 2掌握定理“过梯形一腰中点且平行底的直线平分另一腰” 3能够应用梯形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力和分析能力 4通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力 5. 通过一题多解,培养学生对数学的兴趣 二、教学设计 引导分析、类比探索,讨论式 三、重点和难点 1教学重点:梯形中位线性质及不规则的多边形面积的计算 2教学难点:梯形中位线定理的证明 四、课时安排 1课时 五、教具学具准备 投
3、影仪、胶片,常用画图工具 六、教学步骤 【复习提问】 1什么叫三角形的中位线?它与三角形中线有什么区别?三角形中位线又有什么性质 2叙述平行线等分线段定理及推论1、推论2. 【引入新课】 梯形中位线定义:连结梯形两腰中点的线段叫梯形的中位线. 现在我们来研究梯形中位线有什么性质. 如图所示:ef是 的中位线,引导学生回答下列问题:ef与bc有什么关系? 如果 ,那么df与fc,ad与gc是否相等?为什么?ef与ad、bg有何关系? ,教师用彩色粉笔描出梯形abgd,则ef为梯形abgd的中位线. 由此得出梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半. 现在我们来证明这个定理.
4、已知:如图所示,在梯形abcd中, . 求证: . 分析:把ef转化为三角形中位线,然后利用三角形中位线定理即可证得. 说明:延长bc到e,使 ,或连结an并延长an到e,使 ,这两种方法都需证三点共线较麻烦,所以可连结an并延长,交bc线于点e,这样只需证 即可得 ,从而证出定理结论. 证明:连结an并交bc延长线于点e. 又 , mn是 中位线. . 复习小学学过的梯形面积公式 . 因为梯形中位线 所以有下面公式: 例题:如图所示,有一块四边形的地abcd,测得 ,顶点b、c到ad的距离分别为10m、4m,求这块地的面积.分析:这是一个不规则的多边形面积计算问题,我们可以采取作适当的辅助线把它分割成三角形、平行四边形或梯形,然后利用这些较熟悉的面积公式来计算任意多边形的面积. 解: , 答:这块地的面积是 182 说明:在几何有关计算中,常常需要用代数知识,如列方程求未知量;在列方程时又需要根据几何中的定理,提醒学生注意数形结合这种解决问题的方法 【小结】 以回答问题的方式让学生总结) 什么叫梯形中位线?梯形有几条中位线? 梯形中位线有什么性质? 梯形中位线定理的特点是什么? 怎样计算梯形面积?怎样计算任意多边形面积? 学过梯形、三角形中位线概念后,可以把平行线等分线段定理的两个推论,分别看成是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湘西民族职业技术学院《工程弹性力学》2024-2025学年第一学期期末试卷
- 湖南科技大学《公共安全数据处理技术》2024-2025学年第一学期期末试卷
- 西南医科大学《机械工程基础1》2024-2025学年第一学期期末试卷
- 长江工程职业技术学院《茶叶综合利用》2024-2025学年第一学期期末试卷
- 洛阳科技职业学院《生物工程实训理论与实践》2024-2025学年第一学期期末试卷
- 西南科技大学《建设工程法规》2024-2025学年第一学期期末试卷
- 焦作工贸职业学院《文献检索与科研写作B》2024-2025学年第一学期期末试卷
- 国际物流操作员知识培训
- 国际时装专业知识培训课件
- 《盘古开天地》小学教案上课件
- 肝胆外科专科知识题库及答案
- 滁州市珠龙广卫绢云母粉厂滁州市南谯区将军山绢云母矿1万吨-年露天采矿工程项目环境影响报告书
- 人民医院心血管外科临床技术操作规范2023版
- 2023年江苏小高考历史试卷
- 主要组织相容性复合体及其编码分子
- 优化物理教学策略的思考(黄恕伯)
- 中国移动-安全-L1,2,3(珍藏版)
- 2017年全国大学生数学建模A题
- 2023年专升本计算机题库含答案专升本计算机真题
- scratch3.0编程校本课程
- GB/T 1685-2008硫化橡胶或热塑性橡胶在常温和高温下压缩应力松弛的测定
评论
0/150
提交评论