[初中教育]第24章 圆 全章教案1_第1页
[初中教育]第24章 圆 全章教案1_第2页
[初中教育]第24章 圆 全章教案1_第3页
[初中教育]第24章 圆 全章教案1_第4页
[初中教育]第24章 圆 全章教案1_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第二十四章 圆 教案教学时间课题24.1.1 圆课型新授课教学目标知识和能力探索圆的两种定义,理解并掌握弧、弦、优弧、劣弧、半圆等基本概念,能够从图形中识别过程和方法体会圆的不同定义方法,感受圆和实际生活的联系培养学生把实际问题转化为数学问题的能力情感态度价值观在解决问题过程中使学生体会数学知识在生活中的普遍性教学重点圆的两种定义的探索,能够解释一些生活问题教学难点圆的运动式定义方法教学准备教师多媒体课件学生“五个一”课 堂 教 学 程 序 设 计设计意图一、创设问题情境,激发学生兴趣,引出本节内容活动1:如图1,观察下列图形,从中找出共同特点图1学生活动设计:学生观察图形,发现图中都有圆,然

2、后回答问题,此时学生可以再举出一些生活中类似的图形教师活动设计:让学生观察图形,感受圆和实际生活的密切联系,同时激发学生的学习渴望以及探究热情二、问题引申,探究圆的定义,培养学生的探究精神活动2:如图2,观察下列画圆的过程,你能由此说出圆的形成过程吗?(课件:画圆)图2学生活动设计:学生小组合作、分组讨论,通过动画演示,发现在一个平面内一条线段oa绕它的一个端点o旋转一周,另一个端点形成的图形就是圆教师活动设计:在学生归纳的基础上,引导学生对圆的一些基本概念作一界定:圆:在一个平面内,一条线段oa绕它的一个端点o旋转一周,另一个端点a所形成的图形叫作圆;圆心:固定的端点叫作圆心;半径:线段oa

3、的长度叫作这个圆的半径圆的表示方法:以点o为圆心的圆,记作“o”,读作“圆o”同时从圆的定义中归纳:(1)圆上各点到定点(圆心)的距离都等于定长(半径);(2)到定点的距离等于定长的点都在同一个圆上于是得到圆的第二定义:所有到定点的距离等于定长的点组成的图形叫作圆活动3:讨论圆中相关元素的定义如图3,你能说出弦、直径、弧、半圆的定义吗?图3学生活动设计:学生小组讨论,讨论结束后派一名代表发言进行交流,在交流中逐步完善自己的结果教师活动设计:在学生交流的基础上得出上述概念的严格定义,对于学生的不准确的叙述,可以让学生讨论解决弦:连接圆上任意两点的线段叫作弦;直径:经过圆心的弦叫作直径;弧:圆上任

4、意两点间的部分叫作圆弧,简称弧;弧的表示方法:以a、b为端点的弧记作,读作“圆弧ab”或“弧ab”;半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫作半圆 优弧:大于半圆的弧叫作优弧,用三个字母表示,如图3中的;劣弧:小于半圆的弧叫作劣弧,如图3中的活动4:讨论,车轮为什么做成圆形?如果做成正方形会有什么结果?(课件:车轮;课件:方形车轮)学生活动设计:学生首先根据对圆的概念的理解独立思考,然后进行分组讨论,最后进行交流教师活动设计:引导学生进行如下分析:如图4,把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,

5、因此当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳;如果做成其他图形,比如正方形,正方形的中心(对角线的交点)距离地面的距离随着正方形的滚动而改变,因此中心到地面的距离就不是保持不变,因此不稳定图4三、应用提高,培养学生的应用意识和创新能力活动5:如何在操场上画一个半径是5 m的圆?说出你的理由师生活动设计:教师鼓励学生独立思考,让学生表述自己的方法根据圆的定义可以知道,圆是一条线段绕一个端点旋转一周,另一个端点形成的图形,所以可以用一条长5m的绳子,将绳子的一端a固定,然后拉紧绳子的另一端b,并绕a在地上转一圈b所经过的路径就是所要的圆活动6:从树木的年轮,可以很清楚地看出树生长的年龄如

6、果一棵20年树龄的红杉树的树干直径是23 cm,这棵红杉树平均每年半径增加多少?图5师生活动设计:首先求出半径,然后除以20即可解答树干的半径是232115(cm)平均每年半径增加115200575(cm)小结:圆的两种定义以及相关概念作业设计必做请做一个正方形的车轮,体会在车轮滚动的过程中车身的情况选做教学反思教学时间课题2412 垂直于弦的直径课型新授课教学目标知识和能力探索圆的对称性,进而得到垂直于弦的直径所具有的性质;能够利用垂直于弦的直径的性质解决相关实际问题过程和方法在探索问题的过程中培养学生的动手操作能力,使学生感受圆的对称性,体会圆的一些性质,经历探索圆的对称性及相关性质的过程

7、进一步体会和理解研究几何图形的各种方法;培养学生独立探索,相互合作交流的精神情感态度价值观使学生领会数学的严谨性和探索精神,培养学生实事求是的科学态度和积极参与的主动精神教学重点垂直于弦的直径所具有的性质以及证明教学难点利用垂直于弦的直径的性质解决实际问题教学准备教师多媒体课件学生“五个一”课 堂 教 学 程 序 设 计设计意图一、 创设问题情境,激发学生兴趣,引出本节内容活动1:用纸剪一个圆,沿着圆的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?(课件:探究圆的性质)学生活动设计:学生动手操作,观察操作结果,可以发现沿着圆的任意一条直径对折,直径两旁的部分能够完全重合,由

8、此可以发现:圆是轴对称图形,任何一条直径所在直线都是它的对称轴教师活动设计:在学生归纳的过程中注意学生语言的准确性和简洁性二、问题引申,探究垂直于弦的直径的性质,培养学生的探究精神活动2:按下面的步骤做一做:第一步,在一张纸上任意画一个o,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合;第二步,得到一条折痕cd;第三步,在o上任取一点a,过点a作cd折痕的垂线,得到新的折痕,其中点m是两条折痕的交点,即垂足;第四步,将纸打开,新的折痕与圆交于另一点b,如图1 图1 图2在上述的操作过程中,你发现了哪些相等的线段和相等的弧?为什么?(课件:探究垂径定理) 学生活动设计:如图2所示,连接oa、o

9、b,得到等腰oab,即oaob因cdab,故oam与obm都是直角三角形,又om为公共边,所以两个直角三角形全等,则ambm又o关于直径cd对称,所以a点和b点关于cd对称,当圆沿着直径cd对折时,点a与点b重合,与重合因此am=bm,=,同理得到教师活动设计:在学生操作、分析、归纳的基础上,引导学生归纳垂直于弦的直径的性质:(1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧活动3:如图3,所在圆的圆心是点o,过o作ocab于点d,若cd=4 m,弦ab=16 m,求此圆的半径图3学生活动设计:学生观察图形,利用垂直于弦的直径的性

10、质分析图形条件,发现若ocab,则有ad=bd,且ado是直角三角形,在直角三角形中可以利用勾股定理构造方程教师活动设计:在学生解决问题的基础上引导学生进行归纳:弦长、半径、拱形高、弦心距(圆心到弦的距离)四个量中,只需要知道两个量,其余两个量就可以求出来解答设圆的半径为r,由条件得到od=r4,ad=8,在rtado中,即解得r10(m)答:此圆的半径是10 m活动4:如图4,已知,请你利用尺规作图的方法作出的中点,说出你的作法图4师生活动设计:根据基本尺规作图可以发现不能直接作出弧的中点,但是利用垂径定理只需要作出弧所对的弦的垂直平分线,垂直平分线与弧的交点就是弧的中点解答1连接ab;2作

11、ab的中垂线,交于点c,点c就是所求的点三、拓展创新,培养学生思维的灵活性以及创新意识活动5 解决下列问题1如图5,某条河上有一座圆弧形拱桥acb,桥下面水面宽度ab为72米,桥的最高处点c离水面的高度24米现在有一艘宽3米,船舱顶部为方形并高出水面2米的货船要经过这里,问:这艘船是否能够通过这座拱桥?说明理由图5 图6学生活动:学生根据实际问题,首先分析题意,然后采取一定的策略来说明能否通过这座拱桥,这时要采取一定的比较量,才能说明能否通过,比如,计算一下在上述条件下,在宽度为3米的情况下的高度与2米作比较,若大于2米说明不能经过,否则就可以经过这座拱桥解答如图6,连接ao、go、co,由于

12、弧的最高点c是弧ab的中点,所以得到ocab,ocgf,根据勾股定理容易计算oe=15米,om=36米所以me=21米,因此可以通过这座拱桥2银川市某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道如图7所示,污水水面宽度为60 cm,水面至管道顶部距离为10 cm,问修理人员应准备内径多大的管道? 图7 图8师生活动设计:让学生在探究过程中,进一步把实际问题转化为数学问题,掌握通过作辅助线构造垂径定理的基本结构图,进而发展学生的思维解答 如图8所示,连接oa,过o作oeab,垂足为e,交圆于f,则ae=ab = 30 cm令o的半径为r,则oa=r,oeof-efr-10在rtaeo中

13、,oa2=ae2+oe2,即r2=302+(r-10)2解得r =50 cm修理人员应准备内径为100 cm的管道小结:垂直于弦的直径的性质,圆对称性作业设计必做习题241 第1题,第8题,第9题选做教学反思教学时间课题2413 弧、弦、圆心角课型新授课教学目标知识和能力通过探索理解并掌握:(1)圆的旋转不变性;(2)圆心角、弧、弦之间相等关系定理;过程和方法(1)通过观察、比较、操作、推理、归纳等活动,发展空间观念、推理能力以及概括问题的能力;(2)利用圆的旋转不变性,研究圆心角、弧、弦之间相等关系定理学生在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想,转化的数学思想解决问题

14、情感态度价值观培养学生积极探索数学问题的态度及方法教学重点探索圆心角、弧、弦之间关系定理并利用其解决相关问题教学难点圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的理解及定理的证明教学准备教师多媒体课件学生“五个一”课 堂 教 学 程 序 设 计设计意图一、 一、创设问题情境,激发学生兴趣,引出本节内容活动11.按下面的步骤做一做:(1)在两张透明纸上,作两个半径相等的o和o,沿圆周分别将两圆剪下;(2)在o和o上分别作相等的圆心角aob和aob,如图1所示,圆心固定注意:在画aob与aob时,要使ob相对于oa的方向与ob相对于oa的方向一致,否则当oa与oa重合时,ob与ob不能重合图

15、1(3)将其中的一个圆旋转一个角度使得oa与oa重合通过上面的做一做,你能发现哪些等量关系?同学们互相交流一下,说一说你的理由(课件:探究三量关系)师生活动设计:教师叙述步骤,同学们一起动手操作 由已知条件可知aobaob;由两圆的半径相等,可以得到oabobaoab=oba;由aobaob,可得到abab;由旋转法可知在学生分析完毕后,教师指出在上述做一做的过程中发现,固定圆心,将其中一个圆旋转一个角度,使半径oa与oa重合时,由于aobaob这样便得到半径ob与ob重合因为点a和点a重合,点b和点b重合,所以和重合,弦ab与弦ab重合,即,ab=ab进一步引导学生语言归纳圆心角、弧、弦之间

16、相等关系定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等2根据对上述定理的理解,你能证明下列命题是正确的吗?(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等师生活动设计:本问题由学生在思考的基础上讨论解决,可以证明上述命题是真命题二、主体活动,巩固新知,进一步理解三量关系定理活动2:1如图2,在o中,acb60,求证aob=aoc=boc图2学生活动设计:学生独立思考,根据对三量定理的理解加以分析由,得到,abc是等腰三角形,由acb60,得到abc是等边三角形,ab

17、=ac=bc,所以得到aob=aoc=boc教师活动设计:这个问题是对三量关系定理的简单应用,因此应当让学生独立解决,在必要时教师可以进行适当的启发和提醒,最后学生交流自己的做法证明 ab=ac,abc是等腰三角形又 acb60, abc是等边三角形,ab=bc=ca aob=aoc=boc2如图3,ab是o的直径,bc、cd、da是o的弦,且bccdda,求bod的度数 图3学生活动设计:学生分析,由bccdda可以得到这三条弦所对的圆心角相等,所以考虑连接oc,得到aod=doc=boc,而ab是直径,于是得到bod180120教师活动设计:此问题的解决方式和活动3类似,不过要注意学生对辅

18、助线oc的理解,添加辅助线oc的原因三、拓展创新、应用提高,培养学生的应用意识和创新能力活动3:定理“在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等”中,可否把条件“在同圆或等圆中”去掉?为什么?师生活动设计:小组讨论,可以在教师的引导下,举出反例说明条件“在同圆或等圆中”不能去掉,比如可以请同学们画一个只能是圆心角相等的这个条件的图如图4所示,虽然aob=aob,但abab,弧ab弧ab 图4教师进一步引导学生用同样的思路考虑命题:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(

19、劣)弧相等中的条件“在同圆和等圆中”是否能够去掉小结:弦、圆心角、弧三量关系作业设计必做习题241 第2、3题,第10题选做p88:11、12教学反思教学时间课题24.1.4 圆周角课型新授课教学目标知识和能力1了解圆周角与圆心角的关系2探索圆周角的性质和直径所对圆周角的特征3能运用圆周角的性质解决问题过程和方法1通过观察、比较,分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力2通过观察图形,提高学生的识图能力3通过引导学生添加合理的辅助线,培养学生的创造力4学生在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想、转化的数学思想解决问题情感态度价值观引导学生对图形的观察

20、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心教学重点探索圆周角与圆心角的关系,发现圆周角的性质和直径所对圆周角的特征教学难点发现并论证圆周角定理教学准备教师多媒体课件学生“五个一”问题与情境师生行为设计意图活动1 演示课件或图片:问题1如图:同学甲站在圆心o的位置,同学乙站在正对着玻璃窗的靠墙的位置c,他们的视角(和)有什么关系?问题2如果同学丙、丁分别站在其他靠墙的位置d和e,他们的视角(和)和同学乙的视角相同吗?教师演示课件或图片:展示一个圆柱形的海洋馆教师解释:在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗观看窗内的海洋动物教师出示海洋

21、馆的横截面示意图,提出问题教师结合示意图,给出圆周角的定义利用几何画板演示,让学生辨析圆周角,并引导学生将问题1、问题2中的实际问题转化成数学问题:即研究同弧()所对的圆心角()与圆周角()、同弧所对的圆周角(、等)之间的大小关系教师引导学生进行探究教师关注:1问题的提出是否引起了学生的兴趣;2学生是否理解了示意图;3学生是否理解了圆周角的定义;4学生是否清楚了要研究的数学问题从生活中的实际问题入手,使学生认识到数学总是与现实问题密不可分,人们的需要产生了数学将实际问题数学化,让学生从一些简单的实例中,不断体会从现实世界中寻找数学模型、建立数学关系的方法引导学生对图形的观察,发现,激发学生的好

22、奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心活动2问题1 同弧(弧ab)所对的圆心角aob 与圆周角acb的大小关系是怎样的?问题2 同弧(弧ab )所对的圆周角acb 与圆周角adb 的大小关系是怎样的?教师提出问题,引导学生利用度量工具(量角器或几何画板)动手实验,进行度量,发现结论在活动中,教师应关注:1学生是否积极参与活动;2学生是否度量准确,观察、发现的结论是否正确由学生总结发现的规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半教师利用几何画板课件“圆周角定理”,从动态的角度进行演示,验证学生的发现教师可从以下

23、几个方面演示,让学生观察圆周角的度数是否发生改变,同弧所对的圆周角与圆心角的关系有无变化1拖动圆周角的顶点使其在圆周上运动;2改变圆心角的度数;3改变圆的半径大小活动2的设计是为 引导学生发现让学生亲自动手,利用度量工具(如半圆仪、几何画板)进行实验、探究,得出结论激发学生的求知欲望,调动学生学习的积极性教师利用几何画板从动态的角度进行演示,目的是用运动变化的观点来研究问题,从运动变化的过程中寻找不变的关系活动3问题1在圆上任取一个圆周角,观察圆心与圆周角的位置关系有几种情况? (课件:折痕与圆周角的关系)问题2当圆心在圆周角的一边上时,如何证明活动2中所发现的结论? 问题3另外两种情况如何证

24、明,可否转化成第一种情况呢?教师引导学生,采取小组合作的学习方式,前后四人一组,分组讨论教师关注:1学生是否会与人合作,并能与他人交流思维的过程和结果;2学生能否发现圆心与圆周角的三种位置关系教师巡视,请学生回答问题回答不全面时,请其他同学给予补充教师演示圆心与圆周角的三种位置关系教师引导学生从特殊情况入手证明所发现的结论学生写出已知、求证,完成证明教师关注:1学生能否用准确的数学符号语言表述已知和求证,并准确地画出图形来;2学生能否证明出结论学生采取小组合作的学习方式进行探索发现,教师观察指导小组活动启发并引导学生,通过添加辅助线,将问题进行转化教师关注:1学生是否会想到添加辅助线,将另外两

25、种情况进行转化;2学生添加辅助线的合理性;3学生是否会利用问题2的结论进行证明教师讲评学生的证明,板书圆周角定理数学教学是在教师的引导下,进行的再创造、再发现的教学通过数学活动,教给学生一种科学研究的方法,学会发现问题、提出问题、分析问题,并能解决问题活动3的安排是让学生对所发现的结论进行证明培养学生严谨的治学态度问题1的设计是让学生通过合作探索,学会运用分类讨论的数学思想研究问题培养学生思维的深刻性问题2、3的提出是让学生学会一种分析问题、解决问题的方式方法:从特殊到一般学会运用化归思想将问题转化并启发培养学生创造性的解决问题活动4 问题1半圆(或直径)所对的圆周角是多少度?(课件:圆周角定

26、理推论)问题290的圆周角所对的弦是什么?问题3 在半径不等的圆中,相等的两个圆周角所对的弧相等吗?abc=30abc=30问题4在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?问题5如图,点、在同一个圆上,四边形的对角线把4个内角分成8个角,这些角中哪些是相等的角?问题6如图, o的直径 ab 为10 cm,弦 ac 为6 cm,acb 的平分线交o于 d,求bc、ad、bd的长学生独立思考,回答问题,教师讲评问题1提出后,教师关注:学生是否能由半圆(或直径)所对的圆心角的度数得出圆周角的度数问题2提出后,教师关注:学生是否能由90的圆周角推出同弧所对的圆心角度数是180

27、,从而得出所对的弦是直径问题3提出后,教师关注:学生能否得出正确的结论,并能说明理由教师提醒学生:在使用圆周角定理时一定要注意定理的条件问题4提出后,教师关注:学生能否利用定理得出与圆周角对同弧的圆心角相等,再由圆心角相等得到它们所对的弧相等问题5提出后,教师关注:学生是否准确找出同弧所对的圆周角问题6提出后,教师关注:1学生是否能由已知条件得出直角三角形abc、abd;2学生能否将要求的线段放到三角形里求解;3学生能否利用问题4的结论得出弧ad与弧bd相等,进而推出ad=bd活动4的设计是圆周角定理的应用通过4个问题层层深入,考察学生对定理的理解和应用问题1、2是定理的推论,也是定理在特殊条

28、件下得出的结论问题3的设计目的是通过举反例,让学生明确定理使用的条件问题4是定理的引申,将本节课的内容与所学过的知识紧密结合起来,使学生很好地进行知识的迁移问题5、6是定理的应用即时反馈有助于记忆,让学生在练习中加深对本节知识的理解教师通过学生练习,及时发现问题,评价教学效果活动5问题通过本节课的学习你有哪些收获?教师带领学生从知识、方法、数学思想等方面小结本节课所学内容教师关注不同层次的学生对所学内容的理解和掌握教师布置作业 通过小结,使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联系,有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感增加阅读

29、作业的目的是让学生养成看书的习惯,并通过看书加深对所学内容的理解课后巩固作业是对课堂所学知识的检验,让学生巩固、提高、发展作业设计必做教科书p87:4、5、6选做教科书p89:13、14、15教学反思教学时间课题24.2.2 直线和圆的位置关系课型新授课教学目标知识和能力1.探索并了解直线和圆的位置关系2.根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置关系3能够利用公共点个数和数量关系来判断直线和圆的位置关系过程和方法1.学生经历操作、观察、发现、总结出直线和圆的位置关系的过程,培养学生观察、比较、概括的逻辑思维能力2.学生经历探索直线和圆的位置关系中圆心到直线的距离与圆的半径

30、的数量关系的过程,培养学生运用数学语言表述问题的能力3.从运动的观点和量变到质变的观点来理解直线和圆的三种位置关系,培养学生运动变化的辩证唯物主义观点情感态度价值观学生经过观察、实验、发现、确认等数学活动,在探索直线和圆位置关系的过程中,体会运动变化的观点,量变到质变的辩证唯物主义观点,感受数学中的美感教学重点探索并了解直线和圆的位置关系教学难点掌握识别直线和圆的位置关系的方法教学准备教师多媒体课件学生“五个一”问题与情境师生行为设计意图活动1(1)“大漠孤烟直,长河落日圆”是唐朝诗人王维的诗句,它描述了黄昏日落时分塞外特有的景象如果我们把太阳看成一个圆,地平线看成一条直线,那你能根据直线和圆

31、的公共点个数想象一下,直线和圆有几种位置关系吗?(2)观察用钢锯切割钢管的过程,抽象成几何图形间的位置关系.学生观察一轮红日从海平面升起的过程和用钢锯切割钢管的过程,教师提出问题,让学生结合学过的知识,把它们抽象成几何图形,再表示出来 在本次活动中,教师应重点关注:(1) 学生能否准确地观察出圆相对于直线运动的过程中,有几种位置关系;(2) 学生能否根据直线和圆的公共点个数,画出三种不同的位置关系.活动1的设计中让学生用运动的观点观察直线和圆的位置关系,有利于学生把实际的问题抽象成数学模型,也便于学生观察直线和圆公共点个数的变化,同时让学生感受到实际生活中存在的直线和圆的三种位置关系活动2请同

32、学在纸上画一条直线,把硬币的边缘看作圆,在纸上移动硬币,你能发现直线和圆的公共点个数的变化情况吗?公共点个数最少时有几个?最多时有几个?学生动手操作、观察、发现、归纳出直线和圆的公共点个数的变化情况.教师演示直线和圆动态的变化过程,帮助学生用语言描述直线和圆的三种位置关系,明确概念.本次活动,教师应重点关注学生能否根据操作,观察直线和圆的位置关系,作出相应的图形来通过设置数学实验让学生进行独立的探究学习,促使学生主动参与数学知识的“再发现”,培养学生动手实践能力,观察、分析、比较、抽象、概括的思维能力活动3问题:(1) 能否根据基本概念来判断直线与圆的位置关系?(2) 是否还有其他的方法来判断

33、直线与圆的位置关系?教师提出问题,学生思考作答.学生掌握识别直线与圆的位置关系的方法,即直线和圆公共点的个数,圆心到直线的距离和圆半径的数量关系,都可以用来揭示直线和圆的位置关系教师与学生共同总结直线和圆相离、相交、相切的关系中,公共点的个数,公共点的名称,直线名称,圆心到直线距离与半径间的数量关系活动3的设计是从数量关系的角度来探讨直线和圆的位置关系,是让学生学会运用数形结合的数学思想解题活动4(1)应用例 已知:如图所示,aob=30,p为ob上一点,且op=5 cm,以p为圆心,以r为半径的圆与直线oa有怎样的位置关系?为什么?r=2 cm;r=2.5 cm; r=4 cm(2) 练习师

34、生共同完成例题和练习的求解本次活动,教师应重点关注:(1) 学生能否利用直线和圆公共点的个数判断直线和圆的位置关系;(2)学生能否利用圆心到直线的距离和半径间的数量关系判断直线和圆的位置关系例题和练习的安排是为了让学生掌握识别直线和圆的位置关系的方法培养学生正确应用所学知识的应用能力,渗透分类讨论、数形结合等数学思想活动5小结这节课我们主要研究了直线和圆的三种位置关系和识别直线和圆的位置关系的方法,你有哪些收获?学生自己总结,教师应重点关注:(1) 学生对直线和圆的位置关系的性质和判定总结是否全面; (2) 是否有学生能从这节课的学习中,体会到分类讨论的数学思想和数形结合的数学思想在研究问题中

35、的重要性 总结回顾学习内容,帮助学生学会归纳,反思作业设计必做教科书p101:1-5选做教科书p102:10-14教学反思教学时间课题24.2.3 圆和圆的位置关系课型新授课教学目标知识和能力1 探索并了解圆和圆的位置关系2 探索圆和圆的位置关系中两圆圆心距与两圆半径间的数量关系3能够利用圆和圆的位置关系和数量关系解题过程和方法1 学生经历操作、探究、归纳、总结圆和圆的位置关系的过程,培养学生观察、比较、概括的逻辑思维能力2学生经历探索圆和圆的位置关系中两圆圆心距与两圆半径间的数量关系的过程,培养学生运用数学语言表述问题的能力情感态度价值观学生经过操作、实验、发现、确认等数学活动,从探索两圆位

36、置关系的过程中,体会运动变化的观点,量变到质变的辩证唯物主义观点,感受数学中的美感教学重点探索并了解圆和圆的位置关系教学难点探索圆和圆的位置关系中两圆圆心距与两圆半径的数量关系教学准备教师多媒体课件学生“五个一”课 堂 教 学 程 序 设 计设计意图问题与情境师生行为设计意图活动1问题(1)点和圆有几种位置关系?如何识别?(2)直线和圆有几种位置关系?如何识别?(3)两个圆的位置关系又如何呢?教师演示课件,提出问题 学生观察、思考、回答问题在本次活动中,教师应重点关注:(1) 学生能否准确描述点和圆、直线和圆的位置关系;(2) 学生能否用点和圆心的距离与半径的数量关系判别点和圆的位置关系,能否

37、用圆心到直线的距离与半径的数量关系判别直线和圆的位置关系通过回忆已学过的知识,引导学生用类比的思想来学习新的知识.激发学生的求知欲望.活动2观察两个半径不同的o1、o2,固定其中一个而移动另一个的过程中,会出现的几种不同位置关系(1) 根据观察,请你摆出o1和o2的几种不同的位置关系; (2) 你能否根据两圆公共点的个数类比直线和圆的位置关系定义,给出两圆位置关系的定义?利用几何画板画出两个半径不同的圆,固定其中一个而移动另一个让学生观察、发现,并动手摆出两圆的不同位置关系图形请一名学生展示他发现的两圆不同位置关系的图形对于问题(1),教师应重点关注:(1) 学生能否根据操作,观察两圆的位置关

38、系,摆出相应的图形来;(2) 学生能否全部发现两圆的几种位置关系师生共同讨论出两圆的几种位置关系定义对于问题(2),教师应重点关注学生能否用规范清晰的数学语言说出两圆的位置关系通过设置数学实验让学生进行独立的探究学习,促使学生主动参与数学知识的“再发现”,培养学生动手实践能力,观察、分析、比较、抽象、概括的思维能力问题(2)的提出是为了让学生学会用类比的方法研究两圆的位置关系活动3探究(1) 请你根据圆和圆的位置关系,猜测出两圆的圆心距与两圆半径之间的数量关系,利用刻度尺进行测量,验证你的猜想教师提出问题,让学生根据自己所画出的两圆的位置关系图形进一步观察、思考、猜想、测量,发表见解活动3的设

39、计是从数量关系的角度来探讨两圆的位置关系,让学生学会运用数形结合的数学思想解题(2) 圆是轴对称图形,两个圆是否也组成轴对称图形呢?如果能组成轴对图形,那么对称轴是什么?教师利用课件演示两圆位置关系的变化情况,观察随着两圆位置关系的变化,两圆圆心距与两圆半径之和或之差之间的数量关系教师总结活动3讨论出的结论,说明此结论既可作为两圆位置关系的判定又可作为两圆位置关系的性质在本次活动中,教师应重点关注学生对两圆相交时的情况讨论是否深入(不仅要讨论半径和,同时要考察两圆的半径差)研究两个圆所组成的图形的对称性是为研究相交两圆公共弦的性质和相切两圆的切点位置作铺垫.通过这一活动,培养学生学会探究的方法

40、,形成良好的科学研究的习惯,培养学生思维的深刻性和严谨性活动4问题1(1)教科书图24.2-16,o的半径5 cm,点p是o外一点,op=8 cm,以p为圆心作一个圆与o外切,这个圆的半径是多少?以p为圆心作一个圆与o内切呢?(2)o1和o2的半径分别为3、5,设d=o1o2,当d=9时,则o1与o2的位置关系是_;当d=8时,则o1与o2的位置关系是_;当d=5时,则o1与o2的位置关系是_;当d=2时,则o1与o2的位置关系是_;当d=1时,则o1与o2的位置关系是_;当d=0时,则o1与o2的位置关系是_.(3) 已知o1和o2的半径分别为4和5,如果o1与o2 外切,那么 o1 o2=

41、 .(4)已知两圆半径分别为3和7,如果两圆相交,则圆心距d的取值范围是_;如果两圆外离,则圆心距d的取值范围是_.(5) 在图中有两圆的多种位置关系,请你找出还没有的位置关系是 .师生共同完成例题的求解对于问题 (1),教师应重点关注学生能否利用两圆外切或内切时,圆心距与两圆的半径和与差的关系来解题对于问题(2) 、(3)、(4)、(5),教师应当重点关注学生能否会利用两圆的圆心距与两圆的半径的关系,判断两圆的位置关系例题的安排是为了利用已讨论出来的两圆的位置关系与圆心距和半径之间的数量关系的结论来解决问题,使学生学会发现问题,分析问题并解决问题培养学生正确应用所学知识的应用能力,巩固所学的

42、两圆位置关系的性质和判定活动5小结这节课我们主要研究了圆和圆的位置关系,你有哪些收获?布置作业教科书习题14.3第1、4、6题学生自己总结,教师应重点关注:(1) 学生对圆和圆的位置关系的性质和判定总结是否全面; (2) 是否有学生能从这节课的学习中,体会到分类讨论和数形结合的数学思想在研究问题中的重要性 学生通过作业,回顾、梳理知识,反思提高.总结回顾学习内容,帮助学生学会归纳,反思通过课后学生独立思考,自我评价,使学习效果达到最佳作业设计必做教科书p102:6、7选做教科书p103:15-17教学反思教学时间课题243 正多边形和圆课型新授课教学目标知识和能力1 了解正多边形与圆的关系,了

43、解正多边形的中心、半径、边心距、中心角等概念2在经历探索正多边形与圆的关系过程中,学会运用圆的有关知识解决问题,并能运用正多边形的知识解决圆的有关计算问题过程和方法学生在探讨正多边形和圆的关系的学习过程中,体会到要善于发现问题,解决问题,发展学生的观察、比较、分析、概括及归纳的逻辑思维能力和逻辑推理能力情感态度价值观学生经历观察、发现、探究等数学活动,感受到数学来源于生活,又服务于生活,体会到事物之间是相互联系,相互作用的教学重点探索正多边形与圆的关系,了解正多边形的有关概念,并能进行计算教学难点探索正多边形与圆的关系教学准备教师多媒体课件学生“五个一”教学过程设计问题与情境师生行为设计意图活

44、动1观看下列美丽的图案问题1这些美丽的图案,都是在日常生活中我们经常能看到的、利用正多边形得到的物体你能从这些图案中找出正多边形来吗? 问题2你知道正多边形和圆有什么关系吗?你能借助圆做出一个正多边形吗?教师演示课件或展示图片,提出问题1学生观察图案,思考并指出找到的正多边形 教师关注:(1) 学生能否从这些图案中找到正多边形;(2) 学生能否从这些图案中发现正多边形和圆的关系教师提出问题2,引导学生观察、思考学生讨论、交流,发表各自见解教师关注:学生能否联想到等分圆周作出正多边形来通过观看美丽的图案,欣赏生活中正多边形形状的物体,让学生感受到数学来源于生活,并从中感受到数学美问题2的提出是为

45、了创设一个问题情境,激起学生主动将所学圆的知识与正多边形联系起来,激发学生积极探索,研究的热情,调动学生学习的积极性,并有意将注意力集中在正多边形与圆的关系上活动2问题1将一个圆五等分,依次连接各分点得到一个五边形,这五边形一定是正五边形吗?如果是请你证明这个结论问题2如果将圆n等分,依次连接各分点得到一个n边形,这n边形一定是正n边形吗?问题3各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形呢?如果是,说明为什么?如果不是,举出反例教师演示作图:把圆分成相等的5段弧,依次连接各个分点得到五边形教师引导学生从正多边形的定义入手,证明多边形各边都相等,各角都相等,引导学生观察、分析教师

46、关注:(1)学生能否看出:将圆分成五等份,可以得到5段相等的弧,这些弧所对的弦也是相等的,这些弦就是五边形的各边,进而证明五边形的各边相等;(2)学生能否观察发现圆内接五边形的各内角都是圆周角;(3)学生能否发现每一个圆周角所对弧都是三等份的弧;(4)学生能否利用这些圆周角所对的弧都相等,证明五边形的各内角相等,从而证明圆内接五边形是正五边形教师带领学生完成证明过程教师提出问题2,学生思考,同学间交流,回答问题教师关注:学生是否会仿造证明圆内接正五边形的方法证明圆内接正n边形教师根据学生的回答给以总结:将圆n等分,依次连接各分点得到一个n边形,这n边形一定是正n边形教师提出问题3,学生讨论,思

47、考回答教师关注:(1)学生能否利用正多边形定义进行判断;(2)学生能否由圆内接多边形各边相等,得到弦相等及弦所对的弧相等,进而证明圆内接多边形的各内角相等;(3)学生能否举出反例说明各角相等的圆内接多边形不一定是正多边形教师讲评在活动1中学生们发现了正多边形与圆有着密切的关系,只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形活动2的设计就是要学生在教师的指导下进行逻辑推理,论证所发现的结论的正确性,从而培养学生科学严谨的治学态度,和运用所学知识解决问题的能力问题2的设计是将结论由特殊推广到一般这符合学生的认知规律并教给学生一种研究问题的方法:由特殊到一般问题3的提出是为了巩固所学知

48、识,使学生明确判定圆内接多边形是正多边形,必须满足各边都相等,且各内角都相等,这两个条件缺一不可同时教给学生学会举反例,培养学生思维的批判性活动3学生观看课件,理解概念例题1 有一个亭子(如图)它的地基是半径为4 m的正六边形,求地基的周长和面积(精确到0.1 m2) 完成教材第105页例题教师演示课件,给出正多边形的中心,半径,中心角,边心距等概念教师引导学生画出正六边形图形,进行分析教师关注:(1)学生能否知道欲求地基的周长和面积,需要先求正六边形的边长和边心距;(2)学生能否将正六边形的边长、半径和边心距集中在一个三角形中来研究(3)学生能否将正六边形的中心与顶点连接起来,将正六边形分割

49、成6个全等的等腰三角形,去发现每个等腰三角形的顶角就是中心角,腰是半径,底边是边长,底边上的高是边心距,从而可以利用勾股定理进行计算,进而能够求得正多边形的周长和面积教师引导学生完成例题1的解答总结这一类问题的求解方法教师让学生独立完成例题2,教师巡视,个别辅导给出正确答案例题1、2是有关正多边形计算的具体应用,目的是让学生在了解有关正多边形的概念后,通过例题的练习,巩固所学到的知识学生在教师的引导下,将正多边形的中心,半径,中心角,边心距等集中在一个三角形中来研究,即将正多边形的中心与顶点连接起来,将正多边形分割成n个全等的等腰三角形,让学生们发现每个等腰三角形的顶角为中心角,腰为半径,底边为边长,底边上的高为边心距,可以利用勾股定理进行计算进而能够求得正多边形的周长和面积教师引导学生将实际问题转化成数学问题,将多边形化归成三角形来解决体现了化归思想在解题中的应用活动4 小节学完这节课你有哪些收获?思考题问题1:正n边形的一个内角的度数是多少?中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论